
Super-Turing Computation:
A Case Study Analysis

Keith Douglas

Carnegie Mellon University
2003

Page 1 of 61

Dedication

This work is dedicated to my friends (particularly birds and cat).

Your affection has made this work pleasant. Much thanks goes out

to my supervisory committee: Wilfried Sieg, Jeremy Avigad and

Horacio Arlo-Costa, for making this work possible and manageable.

I also thank CMU’s philosophy department for being a remarkable

place to work, and in particular, the CAAE for helping out a non-

ethicist. A final word of thanks also extends to my parents, who

helped financially during the time of writing of this document.

Page 2 of 61

Table of Contents

Dedication ... 2

Table of Contents .. 3

Introduction and Terminological Note 4

Part 1: Features of the Turing Machine Model 6

Part 2: Remarks on Super-Turing Computation in General 20

Part 3: Description of Siegelmann Analogue Neural Networks . 23

Part 4: Criticism of the Siegelmann Model 42

Part 5: Responses to Our Critics 52

Part 6: Conclusions and Future Directions 59

Works Cited .. 60

Figures

Figure 1: Hierarchy .. 17

Figure 2: Block Diagram of General Siegelmann Network 27

Figure 3: Example Siegelmann Network 30

Figure 4: Lever .. 52

Page 3 of 61

Introduction

In 1936, Alan Turing introduced his characterization of the notion

of computability in terms of the now famous “Turing machine”

model. By the 1970s, this model was being scrutinized to see

whether it could be improved upon so that the class of functions

so “effectively” computable could be enlarged 1. By the time of

writing of this thesis, there have been a few dozen “super-Turing”

models put forward and discussed in the literature by computer

scientists, philosophers, mathematicians, physicists and others.

Our work is a contribution to the philosophical discussion of this

field.

We begin by discussing several key features of the Turing machine

model that are important for understanding where it might be

modified. Sieg (e.g., 1994, 1997, 2000) and Gandy (1980) have

discussed some of these properties and formulated general

presentations of the class of Turing-equivalent computers.

However, some features of Turing’s model are not always emphasized

in the literature (for reasons that we shall note) and so it is

important to carefully consider them. Our discussion will focus on

those features which, when suitably modified, lead to an

appropriate super-Turing model, or whose emphasis is needed to

understand it. Some of the features are only relevant when

understood in the light of modification of others and thus might

seem strange to mention in isolation.

Our second section introduces these “super-Turing” models in

general terms, states the goals for their introduction, and

defines some terminology used in the literature about them.

Following the above, we discuss one interesting putative super-

Turing model from the literature, the analogue neural networks of

Hava Siegelmann (1999). We explain how it generalizes an existing

Turing-equivalent model.

1 For representative surveys of “super-Turing computation”, see Ord (2002) and

Cotogono (2003).

Page 4 of 61

Further, we analyze the plausibility of Siegelmann’s model in

light of the previous discussion of features. We show that,

despite its many virtues, it has various oversights which render

it unsuitable as a model of computation.

Subsequently, we respond to some brief objections to our work that

have been raised. For instance, we discuss whether Siegelmann’s

proposal should be regarded as a model of computation , and also

why it should be regarded as a potential rival to the Turing

model.

Finally, we conclude that Siegelmann’s model, while it goes a long

way in exploring super-Turing computation, does not convincingly

develop the idea. We are thus left with the outcome that Turing’s

own viewpoint is basically still viable as an acceptable

understanding of computability.

Terminological Note

An important piece of terminology we use (f ollowing Sieg (1994)

and Gandy (1980)) is the distinction between comput or and

comput er . A computor is a human who performs a computation; a

computer is anything which computes, though generally we shall use

it in contrast with computor.

Page 5 of 61

Part 1: Features of the Turing Machine Model

In this section we draw attention to several features of the

Turing machine model that are important for understanding putative

super-Turing computation. We presuppose that the reader is

familiar with both the Turing machine model generally (Turing 1964

[1936]; Kozen 1997; Epstein and Carnielli 2000) and with some of

the assumptions and conditions which characterize it (Gandy 1980;

Sieg 1994, 1997, 2000). We begin with a sketch of this model for

the sake of reference and move on to discussing the features that

shall be of importance: ones that are vital for understanding the

debate over super-Turing computation.

We begin with a description of the Turing machine model. There are

many equivalent machine models which are extensionally equivalent:

they calculate the same class of functions. These are the Turing-

equivalent models. Below we sketch one version, which is more or

less that which Turing himself introduces (1964 [1936]). We focus

on this particular version as it is the most familiar to most

readers, and the decision is otherwise more or less arbitrary. Our

taking of the Turing machine model concretely is parallel to what

we do later with the Siegelmann model.

A Turing machine involves 2 primary parts. One is a sensor and

control mechanism, the other an unbounded piece of paper, called

the “tape” of the machine. The sensor and control mechanism is a

finite state device of unspecified character. All that is

important is that it is able to write any of a finite repertoire

of symbols on the tape, move the tape left or right, and change

its internal state based on the currently scanned tape symbol

(again, one of a finite collection) and the existing state. For

our purposes we assume a deterministic Turing machine, in which

this state change is uniquely determined by the existing state and

the scanned symbol.

A finite input gets represented in a suitable fashion by writing

it on the tape in the appropriate alphabet. We then place the

machine in the start state and next its state evolves according to

Page 6 of 61

the state transitions of its finite control. This changes the tape

contents as needed. We understand the state transitions as

representing the procedure of computing the function. By the same

token, reading off the results of the tape after the machine has

entered a “halt” state is a suitable understanding of its output.

This output is always a finite string after a finite time, as we

assume the state transitions of the machine take place in non-

decreasing time periods. (There is, of course, no requirement that

the “halt” state ever be reached.) Since the tape is unbounded in

length, the machine has as much scratch space as one wants to use

when computing. It is this latter feature that increases the power

of the machine over that of the finite control alone. It also

allows the output to be of any finite size whatsoever. Thus, to

use a Turing machine to calculate the value of a function, place

its input on the tape (using the correct protocol), set the

machine in motion by putting it in a start state, and then after a

finite time, the result of the calculation (if there is one) is

written on the tape using the appropriate protocol. The class of

functions computable by the Turing machines is referred to as the

(Turing-)computable functions, or alternatively, the class of

recursive functions.

Finally, it is useful to note that since any particular Turing

machine is a finitely describable object, one can feed an

appropriate description of the state transitions of a Turing

machine and its initial tape contents to another suitably

constructed one and have it simulate the behaviour of the first.

This can be generalized to a particular class of Turing machines,

called the universal Turing machine 2, which can simulate the

behaviour of any Turing machine whatsoever.

Before beginning the second section of this part, it is important

to realize that many of the features discussed will seem

2 Convention has it that Turing machines that compute the same function are

regarded as “the same machine.” Strictly speaking one should speak of

equivalence classes of machines, but that is not important for the present

purpose.

Page 7 of 61

unimportant or strange if one is used to usual presentations of

the Turing machine. We beg the reader’s indulgence: we shall see

further in the sequel why each of the features to which we draw

attention are important. The characteristics we shall focus on

are: finiteness, protocol, symbolic computation vs. computation by

measurement, procedural form of computation, communicability,

representations, generality, timelessness, hierarchy.

The features we discuss can be motivated as they arise under three

different headings: how they extend existing models in a

minimalist way, how they allow the proposed model of computation

to make some degree of sense as an engineering-like proposal, and

finally, how they permit the proposal seem plausible as a model of

computation or computing.

The first of the features to discuss, “finiteness”, is mentioned

by Turing himself (1964 [1936], pp. 116). This condition can be

justified under all three headings. First, one has to be aware of

which features of the Turing machine can be extended to yield

putative super-Turing computations. The Turing machine is a model

of finite computation in all relevant respects. For this reason it

seems likely that in order to develop a super-Turing model some

aspects of its finiteness will have to be modified 3 . Second,

engineering considerations make it obvious that every machine we

would seriously attempt to build is finite in most respects. Human

beings cannot build something actually infinite in spatial extent,

for instance. But there is slightly more controversy about whether

we can build machines that are infinite in any other respect. In

particular, we emphasize our six notions of finiteness to stress

that we do construct machines that are (at least apparently)

infinite in some respects or other. The question thus is whether

we can use these infinite respects to perform computations. Third,

our desire to understand models of computation also motivates

this condition. Odifreddi (1989) is surely right when he says that

computations are finite in some respect or other.

3 This view is also supported by the proofs of Sieg (2000) and Gandy (1980)

large classes of finite models are Turing equivalent.

Page 8 of 61

However, the finiteness condition is a rather vague one as it

stands. One must ask: “finite in what respect”? At least the

following six ways come to mind:

(a) number of (computational) parts

(b) time of operation

(c) amount of memory

(d) number of states (“of mind”)

(e) power of recognition of symbols (“sensitivity”)

(f) precision of output of symbols

Qualification of (a) is needed: in some mereologies, all concrete

things (save perhaps for some pointlike “atoms”) have continuum

many parts. It is thus useful to state this condition in terms

relevant to computing. (This also avoids worrying about whether

those mereologies are correct.) Church in his review (1937) of

Turing’s work mentioned this finite aspect of the “Turing

machine.” Point (b) is not even discussed by Turing himself or his

contemporaries: no doubt the idea of a computor calculating for

€

ℵ0

years would have struck Turing as too far fetched to be worth

mentioning. It should, however, be pointed out (in light of some

literature) that time of operation should be regarded as the

“proper computation” time of a given computer 4. This allows careful

discussion of relativistic tricks, Zeus machines (à la Boolos and

Jeffrey 1980), etc. We leave these applications to future

discussions. Aspect (c) is explicitly discussed by Turing, and

motivates the discussion of the finite but unbounded tape (memory)

that forms a key feature of his machine model.

Similarly, point (d) is discussed by Turing. Even if one dispenses

(as Turing does) with the psychologistic overtones of “of mind” in

the above description, “something” with state is necessary. A

system of Post-like systems which are numbered (and hence one can

“GOTO” around) does not dispense with the state requirement: at

4 For a computer equipped with a clock this can be loosely regarded as the

number of cycles of operation.

Page 9 of 61

minimum a “program counter” is needed. In this case the finite

“program counter” is the relevant subcondition, entailing that the

number of instructions be finite. (Alternatively, one can specify

that the number of instructions is finite; then the condition that

the “program counter” be finite follows.) Note that this “Post-

inspired” approach does make the “program counter” part of the

symbolic configurations in question. One must also remember that

in many applications of the Turing analysis the importance of

this “bit of state” is nil.

However, any application of the appropriate theory of computing to

concrete proposals requires recognition of the notion of state.

In particular, if we want to develop a putative super-Turing

model, the state space of the relevant model is important. In

particular we must ask: does it involve a continuous quantity? Are

continuous state spaces plausible?

(e) and (f) are sufficiently linked that we can discuss them

together. Turing motivates these finite aspects of his model by

suggesting that if the computor were to use an infinity of

symbols, some would be arbitrarily close together in shape (or

however they are to be recognized as distinct) and thus be

indistinguishable. It is important to realize (in the light of the

distinction between computation by symbolic manipulation and

computation by measurement discussed below) that Turing’s

assumption that symbolic configurations must be of a certain

finite fixed bound is not necessarily violated by certain kinds of

“infinite” devices.

Each of (a)-(f) above can in principle be modified without

modifying the finiteness of the other conditions. (In practice,

(e) and (f) stand or fall together, but this is just a matter of

making a reasonable choice of “calling convention” or protocol.)

As we shall see below, our typical putative super-Turing model

tries to obtain its power by relaxing some of these subconditions

and keeping others.

Page 10 of 61

Hence, i t might be rejoined that the finiteness condition is so

basic to any understanding of (effective) computation that any

putative model of computation that denied it in any form is

radically different enough to be unworthy of consideration. Our

answer to this is simple: we wish to give as “fair a shake” to

putative super-Turing models as possible. Obviously, the more ways

a model fails to be finite, the less plausible it becomes.

After all, what stops a “presentation” or “use” of a completed

infinite? We admit this latter is unlikely, but why rule it out a

priori , especially as we shall see, what counts as an infinite

“object” is not obvious.

The second feature of the Turing machine model to discuss is its

“computational protocol.” This is how a Turing machine is to be

interpreted as computing, and thus we can see how “protocol” can

be motivated as a feature under all three of the above conditions.

Since the Siegelmann network we discuss later makes essential use

of its protocol, it is vital that we also specify the protocol of

the Turing machine. Moreover, it is also a good engineering

consideration: without the protocol the models do not describe a

process of any use . A model of computation would be completely

unrealistic if we were told that it was merely a matter of

“reading off” in some unspecified fashion some “infinite” property

of some arbitrary system as the computation. Further, by

understanding the operations of a machine as it transforms well

specified input to well specified output, we can see that the

machine may well be viewed as computing something or other.

In Turing’s original presentation, the “calling convention” (one

form of protocol suitable for “procedural” or “imperative”

computing) involves a scratch space. Turing decides to interleave

scratch with output (1964 [1936], pp. 121). We could pick another

protocol; for instance, that the left of the initial position of

the head is for scratch and input, and the right for output. This

choice is not critical. So long as there is an unbounded amount of

“storage” for any such protocol, the model captures the same class

Page 11 of 61

of computable functions. Our presentation of the Turing machine

model also involves the use of special computational states, the

“halt” states (“accept” and “reject”), entering which ends the

computation. This halting is also a sensible part of the protocol

as it makes “obtaining the output” easier. We use the “accept” and

“reject” states when the machine is used to recognize languages.

Our third feature can be put in terms of the distinction made in

the 1950s and 1960s between computation by measurement vs.

computation by symbolic manipulation. The former is also sometimes

referred to as “dynamic” computation. Making a model for use in a

wind tunnel, then physically simulating a system of interest, etc.

is an example of the former sort of computation. The Turing

machine model is an example of a description of the latter. It

must be said, however, that upon closer inspection, this apparent

distinction is difficult to pin down. In fact, the question of how

exactly one should distinguish the two approaches to

“computations” is a key issue in the later discussion of the

Siegelmann proposal. Intuitively speaking, the Turing machine

model does not characterize something that computes by

measurement, because in general the constructions performed by the

Turing machine are not of the “same form” as what is being

described. For instance, the differential equations describing

flow of air over an airplane which are solved by a Turing machine

are not of the “form” of an airplane and atmosphere in the way

that a scale model plane and a wind tunnel would be. From the

above we can see that this feature is motivated from engineering

as well as computational considerations.

Symbolic computation connects directly to our feature of

procedural computation. The inclusion of this feature can be

motivated by noting that it r eflects a virtue of the Turing model.

We include it for this reason, even if it largely has to be given

up later on.

The Turing machine works procedurally (or imperatively) as opposed

to functionally or “processually”. As is well known, the

Page 12 of 61

specification for a Turing machine includes its “program”, a

sequence of tuples which form instructions which it is to follow

in order to compute. (All procedural computation is symbolic, but

not conversely.)

Communication is our next feature and can be motivated much the

same way as the procedural form of computation feature above.

However, it is also vital from the engineering perspective - we

cannot take a proposal for an artifact seriously unless we are at

least given a partial sketch of how it is to function.

Douglas Hofstadter’s (1979, pp. 562) remark concerning

communication in the context of the Church-Turing 5 thesis (italics

in original) is part of the motivation for our inclusion of this

feature:

“Suppose there is a method which a sentient being follows in order to sort
numbers into two classes. Suppose further that this method always yields an
answer within a finite amount of time, and that it always gives the same answer
for a given number. Proviso: Suppose also that this method can be
communicated reliably from one sentient being to another by means of
language. Then: Some terminating FlooP program (i.e. general recursive
function) exists which gives exactly the same answers as the sentient being’s
method does.”

The “instructions” by which the Turing machine is to compute (i.e.

write symbols, move the tape and change state) are communicable in

human languages (including, now, programming languages or

5 We shall not debate the various forms of this thesis in the present work. We

shall take it to be a thesis about how to understand “effective computability”

- normally by identifying it with Turing-computable functions or any of the

extensionally equivalent understandings. See Odifreddi (1989) for a survey of

nuances and subtle variations on the thesis. Some of the work concerning

super-Turing computation takes itself as finding counterexamples to the

thesis.

Page 13 of 61

mathematics) 6. Clearly, however, as one can describe noneffective

procedures, the putative procedure has to meet pretheoretic

notions of effectiveness. Nevertheless it is an important

consideration when we recall that Turing’s approach originates as

analysis of human computing (Sieg 1994; Sieg 1997; Sieg 2000;

Gandy 1980; Gandy 1995 [1987]). It seems likely that a non-

communicable method is an uneffective one, (as Hofstadter would

suggest), but this is by no means certain.

Next we shall discuss the question of representation 7 of what is

being computed. Turing considers easily understood representations

(see later) and demonstrates their merits with a clear discussion

of their properties and those of the computor responsible for

reading and writing them. The feature of representations is

absolutely vital for engineering considerations. Not only must we

know how the functioning of the system proceeds, we must also know

how properties of the system are used to solve the problem we wish

to solve. For example, in civil engineering we might design a pipe

system. We have to pick a material for our pipes that has certain

desired properties: for example, we might want it to have a

certain tensile strength, a certain (lack of) solubility in water,

and a certain cost per unit mass. The engineering proposal for

using this material must illustrate that the material selected has

these virtues. Similarly, the properties of a computer being

discussed must be the ones relevant to computation. This is

precisely what representation is about and hence is the key

engineering feature.
6 Since the present author has almost no musical talent whatsoever, we shall

ignore Hofstadter’s (fanciful, even by his own admission) possibility that

there is a musical procedure for (e.g.) deciding mathematical statements.

7 In this work, we use “representation” as it is used in electrical

engineering: state of a system used to represent some external object or its

properties. For example: the pattern of voltages (say) in a circuit

[high][low][low][high] represents the bit string “1001”, which in turn can

represent (say) the number 9 in the usual fashion. This usage should not be

confused with the notion of “representability” and related terminology as used

in proof theory.

Page 14 of 61

The inclusion of the feature of representation also can be

justified by noting that in order to compute at all one needs to

compute something and have access to the appropriate parameters

and data for the computation in question. Representations allow

one to do this.

We shall restrict ourselves in the case of the Turing machine to

representations of functions of natural numbers to natural numbers

(and of course natural numbers themselves), as other sorts of

functions computable (or tasks performable) by the Turing machine

can be reduced to such. It is possible, as we now know, to reduce

the number of symbols used by the Turing machine to two, commonly

written 8 as “0” and “1”. Thus we can represent a number by writing

its numeral in an appropriate binary string. A Turing machine with

more symbols can make due with less internal state than one with

less and conversely, but the computational power of all these

variations is the same. It is only required that the number of

distinct symbols be finite (as we have seen above) and at least

two. A function to be computed by the machine is represented by

the class of transformations from input to output via internal

state changes. Any given sequence of such transformations is a

particular computation of a function on its argument (input). The

internal state changes can loosely be regarded as the steps

performed in the computation.

Our next consideration of note in the Turing approach is

“generality”. The universal Turing machine requires us to “need”

only one Turing machine. This virtue we would like to extend to

any putative super-Turing model, and so we included it in our list

of features. It is also a useful engineering feature: engineers

like machines that have the virtues of their predecessors.

8 Curiously, this way of putting it is more vital to what follows than it

might appear. Our way of describing matters acts as an “intuition pump” that

we know how representation of numbers, etc. works in a Turing machine. Or, in

any case, our descriptions shows more is known about the Turing-style

representations than those of Siegelmann model we analyze in what follows.

Page 15 of 61

Our next consideration is perhaps the most unusual for some

readers. This is the “timelessness” of the Turing model.

Timelessness is included as a feature “in retrospect.” That is to

say, in order to understand how the Siegelmann model extends the

Turing one, we need to discuss its use of the time variable. In

particular, we need to know about how the time variable interacts

with the Siegelmann protocol, so the feature of “timelessness” is

also motivated as a feature under the perspective of engineering.

The Turing machine may calculate for any finite period of time

whatever. (Although it is not Turing computable to determine when

infinite looping occurs, we consider a machine that goes into an

infinite loop to have “stopped calculating” after a finite time.

All we mean is that the machine cannot, for instance, decide the

Fermat conjecture by trying all aleph null instances, as that

would require infinite time if done at a constant rate.) We have

already met the feature of “time” above in the discussion of

“protocol”.

We close this subpart with a discussion of what might be called

“hierarchy.” Hierarchy is another virtue we would like to

recapture in an extension to the Turing machine model.

Kozen (1997) discusses computability in the fashion of

increasingly complex languages being recognizable by given types

of automata. He discusses how finite automata can recognize

regular languages, how nondeterministic pushdown automata can

recognize context free languages, and how Turing machines can

recognize type 0 languages, etc. Since all regular languages are

context free, and all context free languages are type 0, each

model of computability recaptures the power of its predecessors.

We suggest that a putative super-Turing model ought to fit nicely

into this hierarchy. In Figure 1 (below), A represents the set of

regular languages, B the context free languages, C the type 0

languages, and D some putatively super-Turing set of languages.

(Alternatively, one can view these sets in terms of their

respective automata.)

Page 16 of 61

A

B
C

D

A

B

#1

C

#2

D

Figure 1: Hierarchy.

In F igure 1 part #1 reflects the desired hierarchy; #2 represents

a putative super-Turing model that does not fit nicely into the

hierarchy.

Our final task in this part is to summarize several of our

findings in more exact terms. From this approach many similarities

and differences between the Turing machine and the Siegelmann

model stand out clearly. We can take each model to be discrete

dynamical systems describable as a structure. Taking as starting

point the work of Kozen (1997), we get rid of unneeded parts of

his presentation and modify it slightly for ease of understanding

and integration with our purpose. Thus, a Turing machine and its

input are describable as a 7-tuple: M=<Q, Σ, δ,s,t,r,i>.

Here, Q is a finite fixed set of states. Intuitively these

correspond to parts of the machine or the computor and his aids.

(In the latter case, one can imagine the computor keeping track of

his stage in the computation by a further piece of paper or the

like.) Generally one can describe these fixed states simply by

giving each a natural number.

Σ is the alphabet of input, output and scratch, in our case

{“0”,”1”}. It is important that this alphabet is fixed in advance

Page 17 of 61

of the construction of the Turing machine in question, that it s

finite, and that each is letter bounded above in size by a finite

amount.

δ is the transition function between states, a function of the

form: Q x Σ −> Q x Σ x {l,r}. Intuitively, this function (given a

state q and a symbol s), returns a new state q’ and a new symbol

s’, as well as tells us to move the tape head (l)eft or (r)ight

accordingly. s’ is the symbol to write, q’ the new state of the

machine. Very often it is fruitful to state this function in the

form of a giant table of tuples of the form

<state,symbol,state’,symbol’,direction>. This table that

characterizes the transition function can be viewed as a series of

instructions. This illustrates how the Turing machine can be

viewed as a procedural form of computation. Note that this table

must be finite and since it describes a function by ensuring

that no two tuples begin with the same state and symbol, this part

of the description limits us to deterministic Turing machines.

Further, since the state table is in the above form, the

instructions (and hence our description as a whole) are in

principle human communicable.

Finally, by using an appropriate transition function and special

states (see below) we can make a Turing machine a universal Turing

machine and thus make it general in the appropriate way. (We shall

not construct one here.)

s is an element of Q, called the start state.

t is an element of Q, called the accept state. This is one of our

two halt states. The other, r (also an element of Q), is called

the reject state . Needless to say, t ≠ r if the machine is used to

recognize languages.

i is a finite string over Σ* , the initial tape contents . We

Page 18 of 61

assume that the rest of the unbounded tape (to the left and to the

right of the string) is blank. Turing’s remarks about

representation make this a suitable elucidation.

We also require that the machine stay in the reject state or the

accept state once entered. This requirement makes interpreting the

function calculated by the machine easier to figure out; it

corresponds to part of our protocol above. Similarly, we can

describe (by suitable restrictions on δ) the other aspects of the

protocol (e.g. how to place scratch, etc.).

Finally, it is interesting to note what happens to hierarchy in

our descriptions . If we allow no scratch space at all (and hence

the input tape is read only), the Turing machine is just a finite

automaton, incapable of recognizing more than regular languages.

If we add a stack (i.e. [approximately] a unidirectional tape with

read/write access only to the first element) and nondeterminism

(as understood in computer science), then we have a push-down

automaton. Notice that the machine model hierarchy, when described

in terms of implementation details, is not as uniform as it is

when described in terms of functions computable (or languages

recognized).

We have discussed some features of the Turing model of computation

that are important to have in mind when contrasting it with

putative super-Turing models. Next we discuss super-Turing models

in general.

Page 19 of 61

Part 2: Remarks on Super-Turing Computation in General

In this section we discuss briefly the purpose behind much of the

research into super-Turing computation. In so doing, we describe

motivations for this research, and define additional terminology

from this field.

Throughout the present work, we use the term "super-Turing

computation" as a synonym of "hypercomputation" or

"hypercomputing" as used in some parts of the literature. As may

be inferred from its name, super-Turing computation is computation

of a sort that "goes beyond" Turing's formulation of computability

and computation. For the most part, this is expressed in terms of

new functions being computable, or new numbers being computable,

or new languages being computable, etc. Since these are relatively

interchangeable in many cases (such as in the original Turing

machine presentation itself) it is understood that one

characterization does not rule out applicability to others. For

example, if one particular super-Turing model 9 is stated in terms

of computable numbers, it is usually relatively straightforward to

transform the model so that it applies to computing (or

recognizing) languages instead. The fact that under most (if not

all) known models of computation these are equivalent should not

blind us to at least the conceivability of them not corresponding

in some model.

"Going beyond" means for our purposes only computing members of a

wider class. We are not interested in matters of computational

complexity in this work. "Model" is used in the sense it is used

in the philosophy of science (for our purposes the use in Bunge

1999 is sufficient). In other words, a model is taken to be a

(usually) mathematized theory of a concrete system, process or

thing 10 . A super-Turing model of computation is thus a theoretical

model (like the original Turing model) of the process of

"computing". A "Turing-equivalent" model is one that is equivalent

with respect to computational power to the Turing machine model.

9 We shall explain this notion as we shall use it in due course.

Page 20 of 61

Siegelmann’s work seems to have a tension between being a purely

mathematical theory and being a model of something in the sense we

have just described. In what follows, since the Turing model is of

something (human computability or computing) “concrete”, we also

take Siegelmann as analyzing something putatively “concrete.” It

is not (for the reasons we discuss) immediately obvious to what

the Siegelmann model refers to beyond this sketch. Furthermore, we

take Siegelmann’s model as literally as possible. Since she

discusses signals and related matters, we shall use these to help

understand intended implementations and thus her model.

This leaves us with "computing" and "computation" as undefined

terms. We do not intend to define these, for any definition would

likely beg the question for or against super-Turing models.

Nevertheless, we answer some questions about what is and is not a

computation or computing device in part 4 of the present work.

(“Computability” is just the name we attribute to what is capable

of being computed. “Human computability”, for example, is what is

computable by humans.) We also presuppose that the computations of

the super-Turing model are at least intended to be "effective" in

some sense or other. Again, we shall not argue over this matter.

Instead, as will be discussed later in greater detail, we shall

assume that "effectiveness" is prima facie guaranteed by a super-

Turing model which is an extension of an existing Turing-

equivalent model. This will not always seem plausible, but it will

at least give us a way to begin.

The various super-Turing models make use of differing assumptions

about where to modify the Turing machine model. Hence, they also

differ in motivation for their introduction as models of super-

Turing computation. We focus on the assumptions used in our

particular super-Turing model case study and must stress that

there are other features of the Turing machine model that are

subject to debate in other super-Turing models. As we are limiting

ourselves to discussions of only one model in this work, we shall

not discuss these other features except implicitly to note how the

Siegelmann model we discuss is more (or less) plausible compared

Page 21 of 61

to other models. For example, some super-Turing models make use of

infinite inputs or outputs. The Siegelmann model does not; we

comment on how this is part of an attempt to keep as many of the

features of the Turing model as possible and to modify it

minimally in order to putatively recognize more languages (and

compute more functions, etc.).

Finally, we use "putative" in various places to emphasize the

contentious nature of many super-Turing models. This is necessary

because the field of super-Turing computation is controversial.

Our goal is to give one model the benefit of the doubt.

We have met some terminology and the motivation behind super-

Turing models in general. Next we shall meet a specific example of

such, the analogue neural networks of Hava Siegelmann.

Page 22 of 61

Part 3: Description of Siegelmann Analogue Neural Networks

In this section we discuss a representative promising super-Turing

model of computation, the analogue neural networks elucidated by

Hava Siegelmann (1999). Since this approach to computation is not

as well known as the Turing machine model, we shall discuss it in

substantial detail. In passing we shall refer to our features from

part 1 to prepare us for the criticism based on these features in

part 4.

Siegelmann introduces her version of neural networks on page 19 of

her monograph Neural Networks and Analog Computation : Beyond the

Turing Limit . A neural network is considered to be a finite

collection of N processors. These processors are elementary in the

sense that they are not further decomposable, computationally

speaking. Each processor has a local state x i (t). “t” here

represents a discrete time index. We assume that at time 0 all the

weights 11 are initialized, the processors (nodes) are connected in

an appropriate fashion, and then the input is fed in. The network

is then presented with a (representation of a) vector u j of
11 A weight of a connection between nodes in a neural network represents some

quantity associated with the embodiment of the nodes or their connection (e.g.

a resistance, potential, etc.). As noted above, the precision of the weights

is of critical importance for the computational capacities of the network.

Interpreting (as we are) neural networks as a model of computation, these are

a part of the structure of the network that allows one to calculate,

representing parameters of the calculation. The weights, together with the

structure of the network and the activation function, determine which

function(s) each network computes. Because of the immediately preceding

considerations, it is difficult to say whether or not the operations of the

Siegelmann network are human-communicable. If we allow the conceit that the

nodes should be regarded as unanalyzed computational units, then we will grant

that Siegelmann’s networks perform human communicable operations. After all,

she gives both a “network style” representation of a particular network and

one that resembles a procedure in a procedural programming language. We

include this point primarily to draw attention to the very strong proviso that

is required in order to state the previous conclusion. That is, we are

assuming that Siegelmann’s model has left the operations of the nodes

unanalyzed. We shall discuss this further in our criticism.

Page 23 of 61

dimension M at each time step. Each component of this vector is an

element of {0,1}. (See the protocol below.)

Thus at each step the network behaviour can be described as

follows:

€

x i (t + 1) = σ aij x j (t) + bij u j (t)
j = 1

M

∑ + c i
j = 1

N

∑

 .

Here we call the a ij , b ij and c i the weights of the network. These

have an initial value set by the net’s designer. Depending from

which domain these weights assume values, the network has

different computational power. We shall focus on the case where

the weights and activation values 12 are permitted to assume

arbitrary real numbered values, as this (Siegelmann claims) is the

case in which the network can perform super-Turing computations.

This infinite precision is the first area where the Siegelmann

model makes assumptions concerning infinite properties. The σ

function in the above equation is called the activation function.

Activation functions are of critical importance in what follows as

they are the second of the assumptions the model makes concerning

the infinite. Siegelmann discuses several of these. One important

one is the truncated linear function:

σ(x) = 0 if x < 0

= x if 0 <= x <= 1

= 1 if x > 1

(See pp. 20-21 of her monograph for other activation functions.)
12 Activation values are the time indexed values associated with a given

node: each of these is a function of the weights of the nodes connected to a

given node. In Siegelmann’s networks these are linear combinations. The

threshold functions then determine what a given node should transmit to

the nodes to which it is connected, based on the given activation value at

each time step.

Page 24 of 61

Note carefully that this choice of function corresponds to a

hypothesis that the Siegelmann networks are infinitely sensitive.

Also note that neither hypothesis concerning the infinite requires

infinite symbolic configurations of the sort that Turing rules out

in the case of the Turing machine. Finiteness of types (e) and (f)

above are not violated. This is so because the Siegelmann style

networks do not compute by symbolic manipulation.

After selecting an activation function, we then pick l of the

processors, and call those the outputs of the network. These

transmit the value of the representation of the activation

function of the l processors along an output line, as we describe

below.

Siegelmann describes a protocol by which the dynamics of such a

network can be used to compute functions and recognize languages.

This involves restricting the input lines to two, called “data”

and “validation”. The data line (D) carries a binary signal into

the network. It goes high to indicate “1”, low to indicate “0”.

The validation (V) line indicates that the data line is active,

going high if input is present and low otherwise. The input to a

network is coded as a signal along these two lines in the expected

way. (As usual, the signal can represent numbers, characters,

etc.) For example, if we wanted input of the number 42 ten , we

would at time zero raise V high. Then at times 0...5 we send bits

1,0,1,0,1,0 respectively along D and then at time 6 drop V to low

and hold it low forever afterwards.

By the same token, there are two data and validation lines, G and

H, which function analogously to the input lines, but are used for

output.

Thus, one can exactify classification in the expected way: a word

is classified by a network (in time r with given appropriate

weights) if starting from the initial state, one presents the word

to the input lines, the output validation line H is high (has

value 1) at time r and 0 at all times before. We read off the

Page 25 of 61

classification from G. If G is high at time r, then the word is

recognized, rejected if G is low.

From there, it is not too difficult to construct an appropriate

elucidation of acceptance of a language. In particular, a language

is accepted by a network if every word in the language is accepted

by the network (per above) and its complement rejected. It is this

use of the networks that Siegelmann suggests is the most

important. She says (pp. 24) she will only discuss computations of

functions directly when the Siegelmann network coincides in power

with the Turing model.

Finally, we can show how networks compute functions. A (partial)

function ϕ(x) is computable by a given network if for every

argument x presented to the network according to the protocol

above:

(1) when ϕ(x) is undefined, H stays low

(outputs all zeros). G may fluctuate between its two

states but since H never goes high, this is irrelevant

from the perspective of “using” the network.

(2) when ϕ(x) is defined, there is an r, the response time

such that:

G outputs the successive digits of ϕ(x)

from times r to r + |x| - 1, where || is the

length of the bit string coding x.

and

H remains high from times r to r + |x| - 1,

and is low at all other times.

See below for a block diagram of a Siegelmann-style network.

Page 26 of 61

D V

......

......
......

......

clock

......

.........

...

G H

Figure 2: Block Diagram of General Siegelmann Network

Now that we have described in basic outline how a Siegelmann style

network is to function, we discuss a family of such networks that

supposedly do super-Turing computations.

Siegelmann introduces a system of three networks (pp. 67) which

are designed to calculate the usual output with range in {0,1}

from a network of wires and logic gates and thus simulate families

of circuits. These three networks are described as the input

network (which takes the appropriate input to the simulated

circuits and stores it accordingly), the retrieval network (which

takes an appropriate input from the input network and simulates it

on the appropriate circuit), and a synchronization (and output)

network that coordinates the first two networks and performs the

appropriate global output. It is the retrieval network that is

discussed in most detail, as it is the only part that performs

Page 27 of 61

super-Turing computations and is also the most difficult to

construct. The motivation (explained on pp. 16 of Siegelmann’s

book) for this particular system is that non-uniform circuit

families are equivalent to non-recursive languages.

Page 65 of the monograph performs the construction of this network

for the reader. The notation x i + = f(some other nodes or

properties thereof) means that at node x i at time t+1 it

calculates 13 the function f() given the values of the other nodes

at time t. u represents the input of the network, presented at

time t = 0. It consists of n 1s, where n is the length of the

coded circuit family. In other words, n is the number of

significant figures of C, the encoded circuit family to be

simulated, in an appropriate base 9 representation. This

representation is chosen here in order to facilitate recognition

of values. Rather than using a directly continuous operation, the

base 9 representation uses a Cantor set 14 style.
13 How this calculation is performed is not clear. Siegelmann seems to suggest

that this would occur by an aspect of the network measuring some appropriate

property of the relevant part of the rest of the network system.
14 Cantor set encodings are used by Siegelmann in several places of her work to

help avoid the problems with recognizing infinite precision numbers. Rather

than having to distinguish between two close values by reading all the bits

representing a value, the Cantor set encoding enforces “gaps” between” valid

encodings. She says (pp. 34), concerning encoding of a stack as a binary

number:

“For example, in order to describe the first bit of the stacks 011•••1 and 100•••0, one must read
the whole number.”

This is especially important with infinite sequences of bits, as the usual

encoding is not one-one. So instead we use base 9 (as in the example of

Siegelmann’s) as follows. We fix the digits used to represent parts of

circuits to the set S = {0,2,4,6,8}. Then we use only the real numbers q of

the form:

€

q =
ai

9 i
i

∞

∑ where each of the a i is an element of S. Then the coding

gives us the “gaps” property, since the numbers used now are sufficiently far

apart; i.e. we have avoided numbers like 0.1111111... ten .

Page 28 of 61

By picking certain strings of these base nine digits, Siegelmann

can have the network she constructs do the appropriate simulation.

She assumes that the gates occur at d+1 levels, where the input

nodes to the circuits are at level 0, the single output at level

d. Each gate has inputs only from the preceding levels and the

value it computes is an input to the following level. (Different

circuits may have different values of d.) A family of circuits

then is a set of circuits such that there is a circuit which

computes on inputs of length n for every natural number n. On page

62, she shows us a good way to encode these families of circuits,

starting with how to encode a single circuit. Each level i begins

with the digit 6. Levels get encoded sequentially, bottom to top.

Each level has its gates encoded successively, 0 to indicate the

start of a gate, a two digit sequence from {42, 44, 22} to

indicate {AND, OR, NOT}, respectively. Then a sequence of digits

over {2,4} encode which gates feed into the current level’s gate.

The jth position of this sequence is 4 if and only if the jth gate

of the previous level feeds in the current gate, 2 otherwise. From

there we can then encode entire families of circuits by placing

their encodings sequentially, delimited by the digit 8 (placing

each circuit encoding in reverse order to simplify proofs - this

is not important for the simulation).

Once that is done, this completes the requirements for the

constructed network, which w e reproduce here:

xi + = σ(9x 10-i) [0 ≤ i ≤ 8]

x9+ = σ(2u)

x10+ = σ(Cx 9 + x 0 - x 1 + x 2 - x 3 + x 4 - x 5 + x 6 - x 7 + x 8)

x11+ = σ((1/9)x 12 + (2/9)(x 1 + x 3 + x 5 + x 7) - 2x 13)

x12+ = σ(x 11)

x13+ = σ(u + x 14 + x 15)

Page 29 of 61

x14+ = σ(2x 13 + x 7 - 2)

x15+ = σ(x 13 - x 7)

x16+ = σ(x 12 + x 7 - 1)

10
0

1

2

3 4 5

6

7

8

9

u

11

12

13

14

15

16

output

C

Figure 3: Example Siegelmann Network.

An important feature to note about this network is that it is

recurrent. Note also we (and Siegelmann) have not depicted the

Page 30 of 61

protocol directly, as the above part is only meant as a piece of a

larger network. Siegelmann also emphasizes that all the weights,

save the one marked C above, can be understood as being

describable as rational values rather than arbitrary real numbered

values. Since this weight can be an arbitrary real numbered value,

it can do its trick by simply having the non-Turing computable

arrangement of gates stored in it as a weight. (This makes it not

too surprising that the Siegelmann networks can do one thing

super-Turing: whether they can compute other super-Turing

functions is not discussed.) How this works to perform super-

Turing computation is simple: interpret the value of C as a non-

Turing computable real number: all languages are recognizable in

exponentially sized circuits, where size is understood as the

total number of gates (Siegelmann 1999, pp. 16). Note that each

circuit family to be simulated requires a different weight

assignment C, and hence a different network. Hence, each language

(at least on this approach) also requires a different network.

She does not give the proof of the above result herself, but

instead appeals to a volume by Balcázar, Díaz and Cabarró (1995;

hereafter B-D-C). However, this volume does not support her claim

as fully stated.

B-D-C's text is primarily about computational complexity, and thus

is outside our current subject. In particular, they only make use

of a super-Turing model (Turing's own abstract "oracles" from his

1938 paper) in order to speed up computation. Siegelmann by

contrast interprets their result (i.e. proving a complexity bound

for simulating certain circuit families) as concerning super-

Turing computation. This would only be true if the construction of

a given network of circuits corresponded to a super-Turing

computable function. B-D-C do not discuss these possibilities even

in passing; the introduction to their work makes it clear that

they are not considering matters of computability per se .

Siegelmann's appropriation of their results is thus in error. In

particular, we cannot know if Siegelmann's claim that her networks

can be set up to recognize all possible languages over {0,1} * is

Page 31 of 61

justified from this example. By contrast, a general proof

concerning all of the Siegelmann networks is provided (earlier in

the chapter) which demonstrates the equivalence of these networks

with polynominal advice Turing machines. Here she makes essential

use of her result that linear precision suffices - this avoids

using infinite numbers of bits ‘all at once’ (pp. 60):

“For this, we use the observation ‘linear precision suffices,’ which guarantees
that if a network N computes in time T(n) then its ‘T(n) truncated version’ (to be
formalized later) computes the same on any input of length n. T-truncated
network [sic] can be specified with an advice of O(T) bits only; this completes the
simulation.”

(Siegelmann’s proof of the linear precision bound can be found on

pp. 68-70 of her work. Note: since the bound proved is of a

certain complexity class only, the linear precision bound is of

necessity inexact unless calculated for a given network. This

would make using it rather difficult without a more detailed

calculation. We assume in the rest of this thesis that the

precision needed can be calculated exactly.)

By contrast, to simulate an advice Turing machine on the network,

we Cantor-encode the advice for inputs of length n into a weight.

It is thus a relatively straightforward matter to construct a

network which retrieves (as in the above example) the advice from

a weight and then passes along the input string and a weight to a

Turing-machine simulation, and hence computes a function

accessible only to an advice Turing machine 15 with appropriate

truncation.

Returning to our specific case, it would appear that t o make a

non-Turing computable pattern of gates it one would need 16 an

15 This is subject to a rather large proviso that we debate later on concerning

infinite time. Nevertheless we have presented Siegelmann’s argument as it

stands, regardless of its plausibility.
16 It has been suggested in the literature that one can make do with simply an

irrational Turing-computable number (e.g., π), but this has never been proved

to this author's knowledge. We ignore this possibility in what follows.

Page 32 of 61

infinite circuit collection in a rather unusual pattern. Later

Siegelmann suggests that exponential advice is required. We shall

return to this in our criticism.

It is fruitful to close by elucidating the Siegelmann network

description as a 5-tuple N=<Q, Σ, δ,i,r>, paralleling our discussion

in part 1 of the Turing machine.

Q is a continuous state variable. For simplicity we are pretending

all the nodes of the Siegelmann network share one state space. We

can do that by reducing all the activation values to a single real

number for any given network. We do this by interleaving each of

the digits from each activation value: 0.a 1a2a3a4... and

0.b 1b2b3b4... becomes 0.a 1b1a2b2a3b3a4b4... in the case of a two

node network. A similar procedure can be done for any Siegelmann

network, as they all have a finite number of nodes. It is of no

benefit to use a high-dimensional state space to elucidate the

behaviour of the Siegelmann network for our applications, as the

trajectories through such are no more illuminating than the ones

through the one dimensional case. Further, by using a one

dimensional state space all Siegelmann networks are represented as

being similar in structure. This idealization of the description

makes comparing them all as a class to the Turing machine more

straightforward. It is also important to realize we are

simplifying matters (see above) by considering that the “linearly

truncated” versions of the network actually make use of dynamics

that just do not move into the appropriate part of the state space

Page 33 of 61

prior to the increased precision being needed 17 . In that sense one

can see the state space used as actually evolving. Of course we

would like to know by what mechanism this occurs as it is a vital

part of understanding Siegelmann’s model. More on this in our

criticism, as Siegelmann does not attempt to answer this question.

The non-denumerable state-space raises some questions about

Siegelmann’s model we should answer. Doing so also shows some of

the virtues and characteristics of the Siegelmann model. First:

one might think Siegelmann’s example network shows that rational

values alone suffice as weights. Since these can be represented as

pairs of (represented) integers, there should be no problem here.

But there is a parameter that is explicitly not represented as a

rational value.

As in usual representations of real numbers on computers

(regardless of how this is to be accomplished), there will be ways

to “break” the representation. A common one in ordinary computers

is the breaking of the associativity of arithmetic. Since

Siegelmann’s networks require real valued weights, unless infinite

precision real numbers are available, there will be a pattern of

17 For example, suppose a network calculates 0.17 (exactly) as an intermediate

value. The evolving network would represent this (somehow!) as 0.17 at one

time, 0.170 later, 0.1700 later still, etc. as more and more precision is

needed. Note that with these networks precision is always finite and hence the

networks always have a finite state space. By contrast, a non-evolving network

has to represent 0.17000000... to infinite precision from the time the value

is calculated (or is “put” in a weight). This requires a non-denumerable state

space as each of the digit after the (here) decimal point can in principle be

different. This in spite of the fact that the computing of 0.17 exactly by

some means may well involve a Turing-computable function. Note also that a

typical Turing machine approach to computable real numbers involves

representing them in some sort of functional way. (For example, we might

represent π as a function in some programming language that sums an

appropriate series.) This approach is not open to the Siegelmann network

directly without modification of protocol because it apparently has to be able

to perform operations on them directly. (This depends critically on how the

representations of arguments and functions etc. is accomplished, of course.)

Page 34 of 61

parameters (inclusive of inputs) where the representation breaks.

For instance, real numbers in existing computers produce

mathematically incorrect results under certain circumstances when

magnitudes being added are very different. Consider the following

example (adapted from Hennessy and Patterson 1998; as usual sub

scripts denote number bases.). Let x = -1.5 ten x 10 38; y = 1.5 ten

x 10 38; z = 1.0, all in IEEE single precision format. Then:

x + (y + z) = -1.5 ten x 10 38 + (1.5 ten x 10 38 + 1.0)

= -1.5 ten x 10 38 + 1.5 ten x 10 38

= 0
but:

(x + y) + z = (-1.5 ten x 10 38 + 1.5 ten x 10 38) + 1.0

= 0 + 1.0
= 1.0

This sort of problem occurs however the numbers in question are

represented in any usual format, and is not exclusive to the IEEE

representation. By contrast Siegelmann’s model, (were it

implementable), would overcome this problem. It may be viewed that

we are being uncharitable to the Turing machine model. Someone

might claim that the sort of issue we are discussing here should

be viewed as one for consideration of numerical methods and

approximation theories and not for computability per se. We rejoin

that our critic has not given an acceptable answer unless the

defender of the Turing machine can show how it would overcome this

issue. If Siegelmann’s networks were of infinite precision as

claimed, in a way this would render them super-Turing. We can call

this a “weak” form of super-Turing computation. Siegelmann has

given an otherwise Turing-equivalent machine model a feature it is

not normally associated with - infinite sensitivity. (The

plausibility of this is examined later.)

Second: can the Siegelmann network thus actually calculate any

Page 35 of 61

general super-Turing function 18 ? Here matters are not so clear.

Since the protocol requires that any output be finite, the

Siegelmann network can only compute the functions whose range of

values can be expressed in a finite number of bits per value. It

is thus not possible for it to output the values of certain

functions which are calculable internally. Nevertheless, if

infinite precision general real numbers are available as weights

to a given network it is able to calculate certain restricted

super-Turing functions. Note, however, that the current discussion

does not yield a conclusion about how internal representations of

the networks should be described. We are given some attributes of

this representation, but not enough to develop the description

further. More on this in the next point.

Σ is a finite input and output alphabet, usually {“0”,”1”}. Unlike

in the Turing machine, we are not told what the internal alphabet

is. It is not immediately clear that there even is one: if the

Siegelmann network computes by measurement, then the internal

representations of values are the magnitudes of some property or

other, not values of some ‘alphabet’ at all. This raises further

questions of “representations” as pertains to the Siegelmann

network which are of vital importance. First of all, it is

important to realize that (unlike the Turing model, which has

finite representations throughout), the Siegelmann model has

finite input and output, but infinite internal representations.

How these representations function, i.e. how weights and other
18 Note the difficulty even in computing a constant function. Since the weights

of each node in a Siegelmann network are of infinite precision, outputting

their value directly is impossible by the protocol described. This arises

because such a constant is still an infinite precision number, and so

outputting requires an infinite amount of time, followed by a signal to

indicate that the output is finished. At best this would require a supertask.

A suitable re-encoding would have to be found, and that is not suggested

anywhere by Siegelmann. Moreover, such would have to handle rational values as

well as surds, transcendental values, and (if noncomputable weights are

allowed), even non-Turing computable numbers, like Chaitin’s constant. Of

course, giving a finite representation of the latter sort of value cannot in

general be done.

Page 36 of 61

numerical quantities get “embodied” in the network, is never

specified by Siegelmann 19 . Internal representations of numbers in

her example network (somehow 20) make use of Cantor sets , but it is

not clear whether this approach is meant in general. This itself

raises issues. If we recall her example of the stack encoding

(part 3, above), it seems that her proposal presupposes that the

stacks are being “read” in binary then transformed to decimal and

then compared. For example: 0111 two = 7 ten is compared to 1000 two

= 8 ten .) See also the above discussion of the protocol as the

questions of representation strongly interact with it. Second,

while the network is given multiplication (after a fashion) and

addition as primitive operations, their representation is not

given either: i.e. which measurements are to be taken as

performing these operations. The other characteristics of Σ are as

in the Turing machine.

δ is the transition function of the Siegelmann network. Normally,

one would describe it as a set of activation functions of all of

the nodes of the network. But, as we have seen, we can place the

activation values into one state space, so only one transition

function is needed of the form δ:RxNx{0,1} 2->Rx{0,1} 2, where R is

the set of real numbers corresponding to the 1 dimensional

activation activation function. N is the set of natural numbers,

used as our time index. The set of pairs over {0,1} is the set of

possible inputs and validation line signals at the given time.

δ then “returns” a new activation value represented as a number

from the set of real numbers (the new value in the activation

space) and two bits corresponding to the data ready signal and the

output line.

19 One should compare this to the Turing machine proposal where the fact that

it calculates by symbolic manipulation makes the functioning of

representations relatively straightforward, as we have sketched above.
20 Since a set is an abstract object, strictly speaking one would describe

the representation using them.

Page 37 of 61

Not all transitions in the activation space are permitted, only

those which respect the restriction (or its truncated version)

€

x i (t + 1) = σ aij x j (t) + bij u j (t)
j = 1

M

∑ + c i
j = 1

N

∑

we have discussed. This function should not be understood as

corresponding to a symbolic calculation in the usual Turing

machine sense. Instead the state function of the Siegelmann

network refers to a property of the system that evolves in such a

way as to be describable in such a fashion. This is how we

understand computation by measurement.

Finally, note that since the state space of the Siegelmann network

is nondenumerable, it is impossible in general to specify δ in

terms of a table (like one often does in the Turing machine case).

In fact, even the equations of the form mentioned above are

elliptical in their description: in general, it is not possible to

describe a Siegelmann network in completely finite terms,

rendering its communicability suspect. It is, however (as we shall

comment on below) possible, to describe the operations of the

network somewhat procedurally if we grant the conceit that we know

the exact value of the weights.

i is a finite string over Σ* , the input contents. Note that this,

strictly speaking, requires the protocol to delimit the input from

the rest of the signal into the network (which is an infinite

string). This input is a binary signal familiar to engineers, and

so the finite string description is suitable. Like the class of

Turing machines with its universal member, there is a Siegelmann

style neural network that is similarly general (pp. 56-57). We can

feed in a coded description of a Turing machine via the input to

the Siegelmann network in much the same way as with the Turing

machine itself. But it is unclear whether there is a general

network that computes what all the Siegelmann style networks do.

If we take the “weak” reading of super-Turing computation

Page 38 of 61

introduced above, then there is of course such a network - the

same universal network that computes all the Turing computable

functions. In the case of the “strong” reading, matters are not so

clear: Siegelmann’s monograph does not attempt to answer this

question.

r is the time of calculation, characterizable as a (finite)

natural number. The protocol needs this in order to manage the

output properly, as strictly speaking, the Siegelmann network

outputs forever. This parameter delimits the relevant portion.

(This is exactly parallel to the input contents case.) The

protocol requires the Siegelmann networks to continue operating

forever, but after a finite time to assert that their output is

ready. In this way they cannot perform the iterative output of a

Turing machine except by fixing a protocol change by which

successive approximations appear on the output sequentially. But

these (without the change in protocol) would appear as one long

output - the H flag would be high throughout. Nevertheless, since

the protocol also requires output (if any) to occur after a finite

time, the timelessness assumption of the Turing machine is exactly

paralleled in this respect. It is also unclear who designs the

output signal. Does the designer of the network have to know how

many time slices into the network operation the signal is to be

raised? Or, by contrast, does it work like the halt state of the

Turing machine? In this case the “programmer” selects which

state(s) will cease operation of the Turing machine or Siegelmann

network, but does not have to worry about when these are to occur,

merely which conditions are to provoke them. Siegelmann does not

tell us. The choice between these possibilities is of vital

importance in our debate on the merits of the Siegelmann proposal,

as we shall see in part four.

Finally, hierarchy also requires that the Siegelmann description

collapses to appropriate weaker models given appropriate

restrictions. Having already illustrated how the Turing machine

collapses, we only need to discuss how the Siegelmann model

collapses to the Turing machine. This collapse occurs by reducing

Page 39 of 61

the precision of the state variable to some finite fixed size.

When this reduction is done, the Siegelmann networks (as intimated

earlier) are no more powerful than Turing machines. Siegelmann

proves this result on pages 33 to 57 of her monograph. It is also

true that if the networks use Turing computable real weights the

Siegelmann network computes no more than the Turing computable

functions.

Note how our features show up as restrictions on these

descriptions as well. (Strictly speaking the features are

restrictions and properties of what the descriptions refer to, but

of course the descriptions ought to match the referents in

question.)

We can now use the above description to make a direct comparison

between the two models. In particular, the state spaces are the

most interesting point of comparison. Not only is the state space

of the (universal) Turing machine finite and the Siegelmann

network infinite, the latter is nondenumerably infinite.

Describing the two models in this fashion shows how likely it is

that the Turing machine is a less powerful model. Nevertheless,

the dynamical systems approach does not allow us to assess the

plausibility of the model as a model of computation without

discussion of what the state spaces are supposed to be state

spaces of . We know some of the details of the Siegelmann network’s

state space, but do not know how to understand (for instance) the

subspace corresponding to the properties of a single pair of

nodes.

One could, however, make some assumptions about the physical

character of these nodes and their weights, leading to the

selection of an appropriate state space. This again raises the

question of idealizations. Suppose that we decide that that the

electrical resistance of a material is to be the weight associated

with a link between nodes. Classical electrodynamics elucidates

resistance as an infinite precision real number, but there are two

important facts to keep in mind. First of all, it is not clear

Page 40 of 61

that the physical property actually varies continually. Until

1900 or so, physicists thought energy levels of atoms varied

continually. Planck is credited with the insight that this is not

so. Resistance “depends” on lower level properties, so it would

not be at all surprising if it is not actually a continuous

property. But, we do not need to even entertain speculative

physics to raise the second of our points, one we have raised

elsewhere. It is not merely that we have to think of how the

property is to be used to “hold” values, but also how this

property interacts dynamically with others, as computation is not

a static occurrence, but a process. Here is where our previous

worries about sensitivity and such matters come into play. Thus

this lower level description would also need a discussion of

activation functions and how they “work”, in order to clarify how

they describe evolution of the node-level subspaces.

We have introduced our case study of a putative super-Turing

model, and seen a specific case where it supposedly performs

super-Turing computation. We next examine where this Siegelmann

network is substantially different from the Turing model to see if

the assumptions it makes render it plausible as a model of super-

Turing computation.

Page 41 of 61

Part 4: Criticism of the Siegelmann Model

Our criticism of the plausibility of the Siegelmann model shall

again consider: finiteness, protocol, symbolic computation vs.

computation by measurement, procedural form of computation,

communicability, representations, generality, timelessness and

hierarchy.

Finiteness (or lack thereof) cannot be a direct reason by itself

to reject Siegelmann’s analysis. Having seen that there are ways a

certain sort of infinite object might be used in well specified

ways to play a role in super-Turing computations, we now put this

assumption through careful scrutiny. We examine both ways in which

Siegelmann’s networks are not finite: precision and sensitivity.

First we discuss precision. As noted, Siegelmann’s networks

require infinite precision “registers”. This precision either

needs to be present from the moment of a network’s construction

(how we are not told), or to somehow get built in as the network

runs. The latter is what Siegelmann has called an “evolving” or

“learning” system, and again a mechanism for this is not

described. This is a grievous oversight, for it does not allow us

to satisfactorily explore its plausibility.

Siegelmann is between a rock and a hard place on this issue. That

is, if the network is finite at each stage, it is (more)

believable; but it seems then to require a supertask to be able to

do something super-Turing. On the other hand, if the networks are

not so finite, it must somehow get the infinite precision (non-

Turing computable) weight from somewhere , and furthermore it must

be infinitely sensitive from the moment of construction. (See also

our response to Davis in Part 5.)

Second, sensitivity: We have seen that Siegelmann’s networks

require infinite sensitivity in order to make use of infinitely

large “registers” (interpreting them in the usual way as

containing a number between 0 and 1). Siegelmann uses Cantor set

style encoding (in order to minimize the difficulties in

Page 42 of 61

recognition between two close register values; see part 3).

However, this trades one problem for another. How do the Cantor

sets in turn get represented? Clearly they cannot be encoded in

binary or the problem they are intended to solve recurs; one

cannot have appropriate Cantor set representations in the same

fashion in base two. However, if they are to remain in base nine,

the usual problem (familiar to electrical engineers) of unstable

states applies. (Many electronic components only have two stable

states.) While we do not intend to suggest that the Siegelmann

proposal must be interpreted as one in electronics or electrical

engineering, this is the easiest case to consider. After all, as

seen in section three, Siegelmann seems to occasionally make use

of this sort of terminology.

Protocol in the Siegelmann network is satisfactory in the way in

which it performs I/O. However, the networks make essential use of

the time variable, which renders it rather unlike the Turing

model. This is simply a point of disanalogy, not a substantial

disagreement. (See the discussion of the “timelessness” condition

below for more.) However, in some applications (e.g. the circuit

family simulation example we have discussed) the encoding of

values in Cantor set style presents two problems. First, the

interaction between those encodings and other encodings (e.g. of

the input in a binary fashion) is an issue. Once number systems

are being converted (particularly between an odd numbered base and

an even one!) round off errors occur and a mechanism is needed to

handle this. The “infinite” registers are needed as well, at the

least to avoid the around off errors. Siegelmann does not discuss

this matter. Second, and more critical, is her claim that the

Cantor set style encoding of the structure of the circuit family

allows us to save the need to (pp. 63):

“distinguish between two very close numbers; thus the analog neurons can
retrieve circuits efficiently using finite-precision operations only.”

We grant that the Cantor set encoding does what she claims if one

can make the distinctions between different elements of the set

{0,2,4,8} using finite precision. Here the problem of unstable
Page 43 of 61

states mentioned above occurs and Siegelmann does not seem to be

aware of the connection between this problem and representations.

We do not stress this point too much as a somewhat analogous point

can be made about the Turing machine. However, it is vital for

Siegelmann’s network that these values be taken as numbers in base

9. That is, in order to compute what she claims the network

computes, Siegelmann needs to explain more how her representations

are to work.

Also, her representations used in I/O make calculation of many, if

not all, constant functions impossible by restricting output to

finite bit strings. Without a discussion of a suitable protocol to

convert (say) internal representations into pairs, or the like,

most constants require infinite numbers of bits to specify. This

oversight probably stems from Siegelmann’s emphasis on languages

(which only need one bit of output) rather than general functions.

We have no direct objection to calculations by measurement, as

even to this day they are used (with the aide of ordinary

computers!) in aeronautical engineering, for example. However,

that said, Siegelmann’s networks (sort of!) require a measurement

of a kind that can never be accomplished - one with infinite

precision. Since even a tiny error reduces the computational

characteristics of the Siegelmann network to a sub-Turing 21 class ,

this implausibility, coupled with the unlikelihood of an

infinitely sensitive sensor (see above in our discussion of the

plausibility of finiteness) is an idealization of the sort we
21 In fact, for the sort of error she discusses on pp. 136-137, those of

“catastrophic nets”, the networks fail to compute anything more than constant

functions! We consider (in general terms) other forms of error - ones related

to more “graceful” failure. (A catastrophic net is one containing only

“forgetting neurons”. A “forgetting neuron” is a node with a certain

probability p of failure which results in the node receiving state = 0 and

regular updates with probability 1 - p. The value p can be different for each

node and makes no difference to the result Siegelmann mentions. She also

mentions that correlating the reliabilities of the nodes (with suitable

assumptions) makes no difference to the (lack of) computational power of the

networks that use them.)

Page 44 of 61

cannot countenance. If, however, we are willing to live with

infinitely precise construction with an error , we have another

possibility. Namely, it seems plausible that one could form a

construction along the lines of the two sides of an 1-1- √2

isosceles triangle, and assert that the two sides were unit

length, to within error e 1, and thus we produce a “real valued

magnitude √2 to within an error e 2 (where e 2 can be calculated

from e 1 in any of the theories of error one chooses). The problem

here would be the generality condition (see below) that this

violates. A √2 machine does not immediately permit construction of

a √3 machine, not to mention any arbitrary real number (in either

a strong or a weak sense). For example: how would one construct a

(√π + 3e - ln 91) - √3 “machine”? (Nor do these “machines” lead to a

strongly noncomputable real number in any straightforward way.)

Our possible proposal is too ill-specified to consider further. It

has been included simply for the sake of completeness.

Procedural computing is our next point of discussion. As noted,

there is a clear sense in which Siegelmann’s networks are

sufficiently like the Turing model in this respect. We thus find

no point of disagreement here and to the extent that they are

different, we find the differences irrelevant.

The above is said with the caveats about our next concern,

communicability, where the comparison is not as cut and dried.

Siegelmann has greatly underspecified the operations of her

network, and so its communicability is acceptable only if we

restrict ourselves to the level in which she discusses the

operations of her network. However, it is unclear that we should

do so for the reasons discussed below under “representations”. Let

us examine the procedural version of the example network discussed

above (part 3) and introduced on page 64 of Siegelmann’s

monograph. We reproduce it with line numbers (and minor

typographical changes, e.g. we use := as in Pascal to denote

variable assignment) below in order to facilitate discussion:

Page 45 of 61

1) Procedure Retrieval (C,n)

2) Variables counter, y, z

3) Begin

4) Counter := 0, y := 0, z := C

5) While Counter < n

6) Parbegin

7) z := Gamma(z);

8) if Xi(z) = 8 then increment Counter

9) Parend

10) While Xi(z) < 8

11) Parbegin

12) z := Gamma(z)

13) y := (1/9)(y + Xi(z))

14) Parend

15) Return (y)

16) End

Xi() and Gamma() can be taken as “select left” and “shift left”

operations respectively, as they have the consequence of

performing these sorts of operation (familiar in binary to

assembly language programmers) on numbers in base 9. We assume

that we have access to the continuous versions of these operations

Siegelmann gives (pp. 64-65), and focus on other issues of

communicability raised by the procedure itself. On line 4,

Retrieval() makes use of an unbounded “register”. As noted

previously, Siegelmann makes no attempt to explain how this part

works. Purely procedurally speaking, we are left with an operation

that is not as decomposed as we would like and thus is

unsatisfactory from the perspective of communication. Similarly,

line 13 also makes use of an “infinite register”. It is true that

these registers at any given run are only finite (albeit

unbounded) in size. However, in order for this network to be used

to simulate any circuit family, and hence recapture the generality

condition, the register would have to be larger than any possible

circuit, that is, actually infinite in size. It must be said,

however, that this objection is not as damming as the sensitivity

objections we have discussed.

Page 46 of 61

However, there is an aspect of this procedure that is less

debatable but is still sufficiently different from the Turing

approach to render its communicability somewhat problematic. These

are the Parbegin ... Parend blocks of lines 6-9 and 11-14.

Siegelmann uses these to indicate that the operations within are

to be understood as occurring simultaneously. Ignoring the

relativistic problem that this raises (as it is a common

assumption in electrical engineering), the question arises of

whether “emulation by time sharing” would count as a suitable

interpretation. We grant that it would, but note that it would

require substantial additional set up and that it is unclear

whether such belongs to the procedure or not. One would have to

imagine some sort of “locking” protocol for concurrent programming

and so on.

We move on to the question of representations. As noted above,

there are several areas in which questions concerning

representations interact strongly with other issues and we do not

need to rework them here. However, a general question about

representations remains to be asked. Since, as we have seen, we

are not given any details about representation in Siegelmann’s

model, we cannot evaluate her model fully and thus consider it to

be underdeveloped for that reason. And yet this point is

absolutely vital for evaluating the proposal’s plausibility as a

whole. The criticality of this consideration can also be seen by a

comparison to the Turing model: Turing argues for the plausibility

of his representations. He contends that the subject of his

analysis (human computation) can motivate restrictions on the

representations, for instance, that they are bounded in size and

hence, at least prima facie , cannot represent infinite objects

like arbitrary infinite precision real numbers. As we have seen,

however, there are (apparently) ways in which finite objects also

have infinite properties, so it is not quite as easy as simply

saying “finite parts therefore finite numbers represented (or

“used”) so Turing computable functions only”. We just cannot be

sure that this is necessarily so until Siegelmann offers more

Page 47 of 61

detail about her proposal.

The next feature, generality, is one which we have already met in

passing. Since there are general (or universal) networks, at least

at the Turing computable level, Siegelmann’s proposal is

satisfactory on that account. It is unclear from her monograph,

however, whether or not there is a general network that computes

all the Siegelmann network functions. Siegelmann comes close to

suggesting that there is not; she writes (emphasis added):

“In particular, if exponential computation time is allowed, one can specify a
network for each binary language , including non-computable ones.”

However, the quoted remark is not conclusive. One needs to ask in

this case “when” infinite precision would be needed. For instance,

Chalmers (1996) has pointed out that at least one model of super-

Turing analogue computation requires infinite precision “all at

once.” Siegelmann would thus have to show that to produce this

general network one needs only finite precision at the beginning

of operation. (Recall that most Siegelmann style networks do not

begin with infinite precision in a certain respect.) Further she

must show how the general network gains the appropriate precision

and in a finite time, otherwise her proposal also involves a

supertask . Note this even more complicated in the case of our

“strong” understanding of super-Turing computability.

Ord and Kieu (2003) have claimed that there cannot be a general

Siegelmann network as the input to a given network is always

finite, and that to specify a network one needs infinite precision

for every weight. Hence, they claim, one could not possibly feed

in “weights to be simulated.” This follows if one assumes that any

network whatsoever is capable of being simulated. If one restricts

oneself to networks that are not excessively complicated, then it

might be possible to “start” with some infinite properties and

“distribute them” appropriately in the simulation. Since , as

Siegelmann points out, there is a universal Turing machine

equivalent neural network this “excessively complicated”

qualification we have given may be taken to be the structure
Page 48 of 61

(number of nodes and links, etc.) of this network. Of course this

does not show that one could do the “spreading around” we have

suggested. The latter is implausible, since it would likely

require more operations beyond the addition and multiplication

that the Siegelmann networks perform. These considerations are a

possible area of future research.

There are two possible responses that Siegelmann could make to the

above objection. The first is to consider whether we could somehow

encode the precision bound required into the “program” to be run

on the network, and somehow have the network “construct” the

appropriate “receptors”. (This procedure would be much as we

decide when running Bochs, say, to emulate X megabytes of memory

for the virtual machine. 22) This proposal fails because one can

always run the “emulation” software in itself. How would one do

that on this proposal? 23 The second response is to simply deny the

importance of the generality condition we have proposed. We

construct specific-task neural networks and do not worry about

generality. Giving up the concept of “programmability” is a major

loss which would not be acceptable to many computer scientists and

engineers. Since the Siegelmann networks are at least Turing-

general, it seems plausible that one could at minimum have

machines combine one specific sort of super-Turing machine and a

universal Turing machine equivalent one. Generality is thus not

totally lost.

“Timelessness” is our next area to debate. Unlike the Turing

machine, the Siegelmann network requires the explicit use of a

time variable. It gets used in several ways, some innocuous.

However, there are several ways in which the time consideration of

the Siegelmann network creates difficulty. First, we do not in

general know the exact running time of a Siegelmann network. (We
22 Bochs is an 80x86 system emulator for various platforms. In order to set up

the settings of the emulator, the user must decide how much 80x86 memory she

wishes to emulate.

23 This objection is similar in flavour to the discussion of “well founded

games” in Cameron (1999).

Page 49 of 61

can work out its complexity class, e.g. that it belongs in class

O(log n) for some parameter n, but the constants left aside by the

bound in this case are critical.) It is true that the network does

flag its output in analogous way to the Turing machine halt state

with its data ready line. However, unlike the Turing machine which

enters the “halt” state by the “programmer’s” decision, the

Siegelmann model is not so programmed. We are not told how to

“raise the flag” to indicate the value of the computation which is

being outputted nor how the network recognizes that its output is

ready. Once again, the Siegelmann network is underspecified.

Further, an infinite regress looms here. Since it is not Turing-

computable when even a Turing machine will halt (if at all),

determining the response time of a Siegelmann network is also not

Turing-computable. If this parameter is to be determined at

construction of the network, one needs to first create a super-

Turing network to calculate the response time of the network one

originally intended to create. But how does one determine the

response time of the response-time calculating network? The

alternative to the preceding considerations seems to be that the

network itself is supposed to validate its own solution, that is,

it must periodically check internally that the solution is ready.

Again, it is not generally clear how exactly this is to work.

Also notice that the “learning networks” create another problem

with regards to time. If the precision of an infinitely precise

real number is not available at the beginning of the run of a

network, and the precision increases uniformly in time, it will

take an infinite amount of time for the network to become

infinitely precise. As previously noted in passing, this entails

immediately that the networks are actually Turing-equivalent for

any finite period of time. Here let us note further that this puts

Siegelmann’s model in an unfortunate dilemma much as the precision

consideration proper above provokes. Once again, either the

network is infinitely precise in finite time, in which case the

Siegelmann network is implausible from the sensitivity

considerations we have canvassed and from related concerns, or it

Page 50 of 61

is only infinitely sensitive in infinite time, in which case using

it to perform super-Turing computations would require a supertask.

The consideration of “hierarchy” is our penultimate point of

criticism of the Siegelmann networks. As noted, the Siegelmann

networks easily fit into the hierarchy if we allow exponential

running time and exponential sized weights (see above on

protocol). In other words, the class of functions computed by all

the Siegelmann networks does strictly include the class of all

functions computable by Turing machines. If there is no general

Siegelmann network, however, this is cause for some worry

regarding the hierarchy: we would want the generality to be

preserved and extended in its next stage. There being no general

Siegelmann network would make the universal Turing machine rather

special: there is no universal finite automaton or universal push-

down automaton either. This would be an interesting result if it

could be shown, and one that would lend credence to the Turing

machine model as a good model of computation for “practical

applications.” (Of course, it could be that there is some other

model with all the virtues of the Siegelmann model that is general

for its class and everything below it. Needless to say, such would

have to be further up the hierarchy.)

To summarize, w e have discussed several areas where the Siegelmann

network model of computation is underspecified or ill-motivated.

There were problems with infinite sensitivity and infinite

“registers” as well as issues with the protocol such as how the

computation time parameter works and how to avoid an infinite

regress.

We have concluded that the Siegelmann network is not a suitable

model of computation for the critical reasons canvassed. Next we

answer some responses to critics of our work.

Page 51 of 61

Part 5: Responses to Our Critics

This section responds to possible criticisms of our work. It

summarizes relevant points where this is helpful to answer the

criticisms.

A first family of questions we must answer: “Why do we suppose

that Siegelmann’s model is a model of computation at all? Doesn’t

Siegelmann’s approach make everything with quantifiable properties

compute? Doesn’t her approach commit one to

“pancomputationalism”?” Our answer is perhaps the one that she

would give, though she in fact does not provide it in her

monograph. Our answer also presupposes that one considers a

rational valued neural network a model of computation. Granted

that assumption, the Siegelmann model can be looked at as an

attempt to modify (minimally) an existing, Turing equivalent model

of computation to produce one that is super-Turing. We thus must

ask: what are these modifications? are these modifications

plausible?

Further, not only does the network at some stage possess a

property with an uncomputable magnitude (either strong or weak),

but it is so constituted that the property in question is (one

might say) computationally efficacious . By this we mean it

plays a role in the entire process of the network, which we

(suitably interpreting it via the I/O protocol) take as computing

some function or other. By contrast, a lever like AB:

θ

B

A

Figure 4: Lever.

does not “compute” an uncomputable function (in the Turing sense),

even if θ happens to be Chaitin’s constant. It might be construed

that this characterization is question begging. In other words,

someone might rejoin: “How do we know that the neural networks of

Siegelmann are computing and the lever is not: after all, one

Page 52 of 61

could say it is computing the constant function x(t) = Chaitin’s

constant?” Our answer appeals to the use of each machine. The

lever is not used to compute, whereas the networks are. In

particular, there probably can be no “programmable lever” where

there is a programmable (hence ‘universal’ in a certain class)

network 24 . There is also no protocol for reading off the result in

question. We are thus claiming that at least some computers are

computers by convention. This approach is similar to the Turing

set-up. We interpret as a computation what Turing’s computor is

doing mindlessly. The “protocol” in both cases gives a semantics

for humans to interpret.

The second group of questions we answer presupposes our answer to

the first. We respond to the question “Doesn’t Siegelmann’s model

of computation change the subject? Turing analyzed human

computability: why should we expect that another sort of

understanding of computation coincides with the Turing one?” We

respond by noting some of the similarities between the Siegelmann

network and the Turing machine.

It is important to note that an important feature of the Turing

analysis is that it centers around a computor capable of operating

on “external” representations (configurations of symbols) of items

to compute with; the latter which must be writeable and readable

in some well specified fashion. Similarly, the Siegelmann network

also makes use of a analogous (crucially: digital) external

representation and simply uses a different sort of “state machine”

to operate on it. In that sense there is also similarity between

the two sorts of machines (recall part 1 and part 3 of this

thesis). We argue, in other words, since both the Turing machine

and the Siegelmann network can be seen as a state machine

operating on an external representation of similar character, it

does not matter what the internal mechanism is to be, at least

from the perspective of “changing the subject” (That the internal

24 Further, this stipulation does not rule out natural computers - if we permit

ourselves to speak of functions of parts of organisms at all. But that is

another story for another time.

Page 53 of 61

mechanism of the Siegelmann network is underspecified is another

matter, and the key issue we find problematic.)

We move on now to debate a new criticism.

Davis has written a paper (forthcoming) in which he discusses

several super-Turing models, including Siegelmann’s. We respond to

Davis here as his apparent refutation of the model is much shorter

than ours. In other words, we answer the question “Why did you

spend 40 pages discussing something that can be refuted in a few

paragraphs?” We would like to stress that Davis’ article is in

conclusion much in agreement with the present work and the

criticisms below speak more to how he arrives at these same

conclusions.

Davis asserts that in order to obtain the super-Turing power of

the Siegelmann networks one has to provide them initially with

non-Turing computable weights. In that sense the powers of the

Siegelmann network are unsurprising (and question-begging: how

does one obtain such a weight in the first place?). While we do

agree with his conclusions, Davis does not (of course) mention the

“weak” and “strong” versions of super-Turing computation that we

have mentioned in our discussion. He also overlooks that the

infinite precision of the Siegelmann networks is only required

after infinite time. Siegelmann has proved (pp. 68-69) that only

linear (in the time of calculation) precision is needed in her

networks. Our problem with Siegelmann’s approach is thus that the

mechanism by which the precision of the registers increase is not

described. This we feel is more charitable to Siegelmann’s model

than Davis grants. That said, Davis can rejoin that Siegelmann’s

model presupposes that the weights are actually infinitely precise

to begin with and only get truncated “after being used”; thus we

need to assume that the full precision weights are available at

construction. However, all that is required by the model is that

at time t + 1, the precision is increased from time t. The source

of these “extra data” is one of our problems with Siegelmann’s

model.

Page 54 of 61

In the context of discussing discovering a non-Turing computable

physics which could provide the Siegelmann network (and other

super-Turing computation proposals we need not discuss) with the

needed non-Turing computable parameters, Davis’ paper also quotes

Scott concerning how we would recognize a “nonrecursive black

box”. We feel this quotation is also slightly mistaken: it proves

too much. We agree that no finite amount of interaction with a

black box could show that it performs non-Turing computable

processes. However, no finite amount of observation could tell you

that a black box contains a Turing machine. Any finite

experimentation with input and output is consistent with the black

box being a (perhaps very large) finite state automaton. This is

not to say Scott and Davis are mistaken concerning the difficulty

of determining that one has a super-Turing machine of some kind,

but instead that it is important not to overstate this difficulty.

Davis does, however, correctly stress at this point of the article

our previous point about the nomological impossibility which makes

Siegelmann’s super-Turing proposal implausible. That is, he

emphasizes how hard it would be to tell that one had a non-

recursive “transparent box” (i.e. a black box with much of its

workings well known).

We would also like to point out that our criticisms of Siegelmann

apply even if science were to give us a means to obtain a non-

Turing computable number. By contrast, Davis focuses more on the

implausibility of obtaining such a number, albeit alluding on page

page 10 of his paper briefly and ellipitically to the sensitivity

consideration we discuss.

Finally, we also feel that Davis gives insufficient attention to

Siegelmann’s (albeit unsuccessful) attempts to integrate her model

with existing models of computation in order to render it more

plausible. Our task has been to see how these attempts at

integration go. If we were simply to take Davis’ refutation of

what he calls the “myth of hypercomputation”, we would not know

exactly why Siegelmann’s model would be even worth considering in

Page 55 of 61

the first place. By providing a more detailed discussion we hope

to have provided fruitful avenues for debate.

Another criticism with which we must deal concerns the status of

Siegelmann’s idealizations, after all, the Turing machine model

itself makes idealizations concerning computing agents and their

resources. The critic will ask: why should we not grant relevant

idealizations to the Siegelmann network? Our response to this

objection begins by noting that we are granting idealizations to

the Siegelmann network: we are in fact giving it many of the same

idealizations as the Turing machine. In particular, we are

allowing it to calculate for arbitrary (but finite) periods of

time without breaking or running down; we are allowing it to

output any finite number of symbols and to take any finite number

as input. We allow further that the network can be constructed out

of any finite number of nodes (which parallels allowing the Turing

machine any finite number of computationally relevant states 25),

etc. What we object to is the idealization of infinite precision.

As we have said, it does not hold, even approximately. An analogy

from another area of investigation will hopefully make this

clearer. Consider the case of a two body system in Newtonian

mechanics. We can work out the gravitational force (and hence

acceleration) on each body to a given degree of accuracy. Assuming

we know the masses, initial velocities, and mutual distance, etc.

sufficiently precisely beyond a certain value, we know the

qualitative behaviour of the system: we know that it will be

gravitationally bound or that the bodies will escape, etc. This

prediction will not be overturned by increasing the precision of

our measurements of the distance or masses 26 , assuming a certain

threshold precision is obtained. By contrast, the Siegelmann
25 N.B.: We are not saying that the Siegelmann networks are finite in state.

That would be obviously false. But they have a finite number of

computationally relevant parts , at least as described by Siegelmann herself.

26 On the other hand, the assumption that the two bodies are completely

isolated or only undergo gravitational forces (etc.) may turn out to be an

inappropriate idealization.

Page 56 of 61

networks would change the class of their behaviour (what class of

functions they compute) were they actually constructed. In this

sense the idealization is unrealistic (nomologically impossible 27 ,

according to current knowledge of physics of noise, etc.: see part

4), and always so, suggesting that it is inappropriate as it is

(unlike the Turing machine) never even approximately

constructible. That said, we have of course no objection to

someone who wishes to study the mathematical properties of how the

networks are described. This seems to be Siegelmann’s own primary

intention, at least some of the time.

Contrarily, another critic may wonder why we are even considering

the idealizations underlying the Siegelmann network. He would ask:

“Aren’t they so far fetched as to be not worth the time to

debate?” Our answer to this relates to our answer to the previous

critic. We agree with this critic that the Siegelmann network

idealizations are implausible; it is difficult to imagine how

humans could make use of infinite properties. But implausibility

is by itself not a sufficient reason to reject them 28 . Once again,

an analogy helps make our point. Routine, teaching-type,

experiments in mechanics make use of the notion of a frictionless

surface. In these cases, the idealization can be checked against

reality. Similarly, with the Siegelmann network we can see

(conceptually or via “thought experiments” of sorts, as Siegelmann
27 It has sometimes been claimed that super-Turing computation is self-

contradictory and thus logically impossible, so the arguments against it from

nomological impossibility such (as ours) are hence weaker than necessary. We

know of no successful proof to that effect; Ord and Kieu (2003) have shown the

fallacious nature of many such arguments. Davis’ article (discussed above)

seems to agree with us when he suggests that one has to draw a distinction

between the abstract theory of computation and the features of physical

computers. We wish to avoid debating how to interpret the former, and since

super-Turing proposals like Siegelmann’s are (in part) an attempt at

understanding the latter, we feel Davis’ suggestion has merit in that respect.
28 After all, it is perfectly conceivable that someone might find the Turing

assumptions too implausible to be worth debating as well. Rejecting this

approach there should lead us to reject the approach with the Siegelmann

network.

Page 57 of 61

has done) how these idealizations fail to match reality. If it

were the case that these idealizations resulted in different sorts

of “malfunction” or error, (say) ones that allowed us to do super-

Turing computations with (say) X% reliability (X > 0), then

perhaps the Siegelmann network would be a useful model. But since

it appears that the networks would have 0% reliability (i.e. would

never work to perform super-Turing computations), the network

idealizations are not suitable. That is to say concerns over being

“far fetched” are necessary but not sufficient for evaluating the

merits of a scientific or technological proposal. Another way to

understand our answer is as a reminder of precisely how far

fetched the Siegelmann assumptions are.

We have responded to several criticisms about our work. Next, we

summarize our findings and suggest a few areas of future research.

Page 58 of 61

Part 6: Conclusions and Future Directions

Our comparison of the Turing and Siegelmann models and the

critical examination of the features of the latter leads us to

conclude that Siegelmann’s approach, while promising in certain

respects, is insufficiently developed to adequately and completely

assess its merits. Nevertheless, to the extent that her model is

developed we do not feel it serves satisfactorily as a model of

super-Turing computation.

There are four possible extensions to the present work we would

like to mention before closing . First, more direct analysis of the

neural network operations would be possible if Siegelmann were to

develop her model further. For example, she could elucidate better

how sensitivity is to function or how the infinite “registers” are

to be understood. Second, the framework of this thesis could be

used to analyze other notions of putatively super-Turing

computation. This would bring some unity to the debates on this

subject in the literature. Third, the distinction between

computing by symbol manipulation vs. computing by simulation or

dynamics could be spelled out in further detail in order to

provide a greater understanding of the work of Siegelmann (and

perhaps others). Fourth, a more extensive exploration of the

inter-simulation powers of the Siegelmann networks, prompted by

the investigations of Ord (mentioned in part 3), would prove

useful in studying their generality.

This ends the text of this thesis. We hope that the reader enjoyed

the material presented and found that it helped to introduce and

clarify some issues in the debates over super-Turing computation.

Page 59 of 61

Works Cited

Balcázar, José Luis; Díaz, Josep and Gabarró, Joaquim. 1995.

Structural Complexity I (2e). Berlin: Springer.

Boolos, George and Jeffrey, Richard. 1980. Computability and

Logic . (2e) New York: Cambridge University Press.

Bunge, Mario. 1999. Philosophy of Science (2 vols.) New Brunswick:

Transaction.

Cameron, Peter. 1999. Sets, Logic and Categories. Berlin: Springer

Verlag.

Chalmers, David. 1996. The Conscious Mind . New York: Oxford

University Press.

Church, Alonzo. 1937. “Review of Turing, 1936.” Journal of

Symbolic Logic. Vol. 2, pp. 42-3.

Cotogono, Paolo. 2003. “Hypercomputation and the Physical Church-

Turing Thesis.” Brit. J. Phil. Sci. 54, pp. 181-223.

Davis, Martin. 1964. The Undecidable . Hewlett: Raven Press.

Davis, Martin. Forthcoming. “The Myth of Hypercomputation.” To

appear in a Festschrift for Alan Turing. Heidelberg:

Springer-Verlag.

Epstein, Richard and Carnielli, Walter. 2000. Computability:

Computable Functions, Logic, and the Foundations of

Mathematics. (2e) Belmont: Wadsworth/Thomson Learning.

Gandy, Robin. 1980. “Church's Thesis and Principles for

Mechanisms.” In Barwise, John, Keisler, H. Jerome., Kunen,

Kenneth. (eds) 1980. The Kleene Symposium . Amsterdam: North-

Holland.

Gandy, Robin. 1993. “On the Impossibility of Using Analogue

Machines to Calculate Non-computable Functions.” Unpublished

Manuscript.

Gandy, Robin. 1995 (1987). “The Confluence of Ideas in 1936.”

in Herken, Rolf. ed., 1995. The Universal Turing Machine:

A Half Century Survey . Wien: Springer-Verlag.

Hennessey, John and Patterson, David. 1998. Computer Organization

and Design: The Hardware/Software Interface (2e). San

Francisco: Morgan Kaufman.

Hofstadter, Douglas. 1979. Gödel, Escher, Bach: An Eternal Golden

Braid . New York: Basic Books.

Page 60 of 61

Kozen, Dexter. 1997. Automata and Computability . New York:

Springer.

Odifreddi, Piergiorgio. 1989. Classical Recursion Theory:

The Theory of Functions and Sets of Natural Numbers . Elsevier

Science: Amsterdam.

Ord, Toby. 2002. Hypercomputation: computing more than the Turing

machine. Available at: http://www.hypercomputation.net/cgi-

bin/download/download.cgi?id=5

Ord, Toby and Kieu, Tien. 2003. “The Diagonal Method and

Hypercomputation” Available at:

http://www.arxiv.org/format/math.NT/0302183

Sieg, Wilfried. 1994. "Mechanical Procedures and Mathematical

Experience". In A. George, ed. 1994. Mathematics and Mind.

Oxford: Oxford University Press.

Sieg, Wilfried. 1997. “Step By Recursive Step: Church’s Analysis

of Effective Calculability.” Bulletin of Symbol Logic,

Vol. 3, No. 2. pp. 154-180.

Sieg, Wilfried. 2000. Calculation by Man and Machine:

Mathematical Presentation . Technical Report No. CMU-PHIL-105.

Siegelmann, Hava. 1999. Neural Networks and Analog Computation :

Beyond the Turing Limit . Boston: Birkhäuser.

Turing, Alan. 1936. "On Computable Numbers, With an Application

to the Entscheidungsproblem." Reprinted in Davis 1964.

Turing, Alan. 1938. “Systems of Logic Based on Ordinals.”

Reprinted in Davis 1964.

Page 61 of 61

http://www.hypercomputation.net/cgi-
http://www.arxiv.org/format/math.NT/0302183

