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Introduction

In 1936, Alan Turing introduced his characterization of the notion 

of computability in terms of the now famous “Turing machine” 

model. By the 1970s, this model was being scrutinized to see 

whether it could be improved upon so that the class of functions 

so “effectively” computable could be enlarged 1. By the time of 

writing of this thesis, there have been a few dozen “super-Turing” 

models put forward and discussed in the literature by computer 

scientists, philosophers, mathematicians, physicists and others. 

Our work is a contribution to the philosophical discussion of this 

field.

We begin by discussing several key features of the Turing machine 

model that are important for understanding where it might be 

modified. Sieg (e.g., 1994, 1997, 2000) and Gandy (1980) have 

discussed some of these properties and formulated general 

presentations of the class of Turing-equivalent computers. 

However, some features of Turing’s model are not always emphasized 

in the literature (for reasons that we shall note) and so it is 

important to carefully consider them. Our discussion will focus on 

those features which, when suitably modified, lead to an 

appropriate super-Turing model, or whose emphasis is needed to 

understand it. Some of the features are only relevant when 

understood in the light of modification of others and thus might 

seem strange to mention in isolation.

Our second section introduces these “super-Turing” models in 

general terms, states the goals for their introduction, and 

defines some terminology used in the literature about them.

Following the above, we discuss one interesting putative super-

Turing model from the literature, the analogue neural networks of 

Hava Siegelmann (1999). We explain how it generalizes an existing 

Turing-equivalent model. 

1 For representative surveys of “super-Turing computation”, see Ord (2002) and 

Cotogono (2003).
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Further, we analyze the plausibility of Siegelmann’s model in 

light of the previous discussion of features. We show that, 

despite its many virtues, it has various oversights which render 

it unsuitable as a model of computation.

Subsequently, we respond to some brief objections to our work that 

have been raised. For instance, we discuss whether Siegelmann’s 

proposal should be regarded as a model of computation , and also 

why it should be regarded as a potential rival to the Turing 

model.

Finally, we conclude that Siegelmann’s model, while it goes a long 

way in exploring super-Turing computation, does not convincingly 

develop the idea. We are thus left with the outcome that Turing’s 

own viewpoint is basically still viable as an acceptable 

understanding of computability.

Terminological Note

An important piece of terminology we use (f ollowing Sieg (1994) 

and Gandy (1980))  is the distinction between comput or  and 

comput er .  A computor is a human who performs a computation; a 

computer is anything which computes, though generally we shall use 

it in contrast with computor.
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Part 1: Features of the Turing Machine Model

In this section we draw attention to several features of the 

Turing machine model that are important for understanding putative 

super-Turing computation. We presuppose that the reader is 

familiar with both the Turing machine model generally (Turing 1964 

[1936]; Kozen 1997; Epstein and Carnielli 2000) and with some of 

the assumptions and conditions which characterize it (Gandy 1980; 

Sieg 1994, 1997, 2000). We begin with a sketch of this model for 

the sake of reference and move on to discussing the features that 

shall be of importance: ones that are vital for understanding the 

debate over super-Turing computation.

We begin with a description of the Turing machine model. There are 

many equivalent machine models which are extensionally equivalent: 

they calculate the same class of functions. These are the Turing-

equivalent models. Below we sketch one version, which is more or 

less that which Turing himself introduces (1964 [1936]). We focus 

on this particular version as it is the most familiar to most 

readers, and the decision is otherwise more or less arbitrary. Our 

taking of the Turing machine model concretely is parallel to what 

we do later with the Siegelmann model.

A Turing machine involves 2 primary parts. One is a sensor and 

control mechanism, the other an unbounded piece of paper, called 

the “tape” of the machine. The sensor and control mechanism is a 

finite state device of unspecified character. All that is 

important is that it is able to write any of a finite repertoire 

of symbols on the tape, move the tape left or right, and change 

its internal state based on the currently scanned tape symbol 

(again, one of a finite collection) and the existing state. For 

our purposes we assume a deterministic  Turing machine, in which 

this state change is uniquely determined by the existing state and 

the scanned symbol.

A finite input gets represented in a suitable fashion by writing 

it on the tape in the appropriate alphabet. We then place the 

machine in the start state and next its state evolves according to 
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the state transitions of its finite control. This changes the tape 

contents as needed. We understand the state transitions as 

representing the procedure of computing the function. By the same 

token, reading off the results of the tape after the machine has 

entered a “halt” state is a suitable understanding of its output.  

This output is always a finite string after a finite time, as we 

assume the state transitions of the machine take place in non-

decreasing time periods. (There is, of course, no requirement that 

the “halt” state ever be reached.) Since the tape is unbounded in 

length, the machine has as much scratch space as one wants to use 

when computing. It is this latter feature that increases the power 

of the machine over that of the finite control alone. It also 

allows the output to be of any finite size whatsoever. Thus, to 

use a Turing machine to calculate the value of a function, place 

its input on the tape (using the correct protocol), set the 

machine in motion by putting it in a start state, and then after a 

finite time, the result of the calculation (if there is one) is 

written on the tape using the appropriate protocol. The class of 

functions computable by the Turing machines is referred to as the 

(Turing-)computable functions, or alternatively, the class of 

recursive functions.

Finally, it is useful to note that since any particular Turing 

machine is a finitely describable object, one can feed an 

appropriate description of the state transitions of a Turing 

machine and its initial tape contents to another suitably 

constructed one and have it simulate the behaviour of the first. 

This can be generalized to a particular class of Turing machines, 

called the universal Turing machine 2, which can simulate the 

behaviour of any Turing machine whatsoever. 

Before beginning the second section of this part, it is important 

to realize that many of the features discussed will seem 

2 Convention has it that Turing machines that compute the same function are 

regarded as “the same machine.” Strictly speaking one should speak of 

equivalence classes of machines, but that is not important for the present 

purpose.
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unimportant or strange if one is used to usual presentations of 

the Turing machine. We beg the reader’s indulgence: we shall see 

further in the sequel why each of the features to which we draw 

attention are important. The characteristics we shall focus on 

are: finiteness, protocol, symbolic computation vs. computation by 

measurement, procedural form of computation, communicability, 

representations, generality, timelessness, hierarchy.

The features we discuss can be motivated as they arise under three 

different headings: how they extend existing models in a 

minimalist way, how they allow the proposed model of computation 

to make some degree of sense as an engineering-like proposal, and 

finally, how they permit the proposal seem plausible as a model of  

computation or computing. 

The first of the features to discuss, “finiteness”, is mentioned 

by Turing himself (1964 [1936], pp. 116). This condition can be 

justified under all three headings. First, one has to be aware of 

which features of  the Turing machine can be extended to yield 

putative super-Turing computations. The Turing machine is a model 

of finite computation in all relevant respects. For this reason it 

seems likely that in order to develop a super-Turing model some 

aspects of its finiteness will have to be modified 3 . Second, 

engineering considerations make it obvious that every machine we 

would seriously attempt to build is finite in most respects. Human 

beings cannot build something actually infinite in spatial extent, 

for instance. But there is slightly more controversy about whether 

we can build machines that are infinite in any other respect. In 

particular, we emphasize our six notions of finiteness to stress 

that we do construct machines that are (at least apparently)  

infinite in some respects or other. The question thus is whether 

we can use these infinite respects to perform computations. Third, 

our desire to understand models of computation  also motivates 

this condition. Odifreddi (1989) is surely right when he says that 

computations are finite in some respect or other.

3 This view is also supported by the proofs of Sieg (2000) and Gandy (1980) 

large classes of finite models are Turing equivalent.
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However, the finiteness condition is a rather vague one as it 

stands. One must ask: “finite in what respect”? At least the 

following six ways come to mind:

(a) number of (computational) parts

(b) time of operation

(c) amount of memory

(d) number of states (“of mind”)

(e) power of recognition of symbols (“sensitivity”)

(f) precision of output of symbols 

Qualification of (a) is needed: in some mereologies, all concrete 

things (save perhaps for some pointlike “atoms”) have continuum 

many parts. It is thus useful to state this condition in terms 

relevant to computing. (This also avoids worrying about whether 

those mereologies are correct.) Church in his review (1937) of 

Turing’s work mentioned this finite aspect of the “Turing 

machine.” Point (b) is not even discussed by Turing himself or his 

contemporaries: no doubt the idea of a computor calculating for 

€ 

ℵ0 

years would have struck Turing as too far fetched to be worth 

mentioning. It should, however, be pointed out (in light of some 

literature) that time of operation should be regarded as the 

“proper computation” time of a given computer 4. This allows careful 

discussion of relativistic tricks, Zeus machines (à la Boolos and 

Jeffrey 1980), etc. We leave these applications to future 

discussions. Aspect (c) is explicitly discussed by Turing, and 

motivates the discussion of the finite but unbounded tape (memory) 

that forms a key feature of his machine model. 

Similarly, point (d) is discussed by Turing. Even if one dispenses 

(as Turing does) with the psychologistic overtones of “of mind” in 

the above description, “something” with state is necessary. A 

system of Post-like systems which are numbered (and hence one can 

“GOTO” around) does not dispense with the state requirement: at 

4 For a computer equipped with a clock this can be loosely regarded as the 

number of cycles of operation.
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minimum a “program counter” is needed. In this case the finite 

“program counter” is the relevant subcondition, entailing that the 

number of instructions be finite. (Alternatively, one can specify 

that the number of instructions is finite; then the condition that 

the “program counter” be finite follows.) Note that this “Post-

inspired” approach does make the “program counter” part of the 

symbolic configurations in question. One must also remember that 

in many applications  of the Turing analysis the importance of 

this “bit of state” is nil.

However, any application of the appropriate theory of computing to 

concrete  proposals requires recognition of the notion of state. 

In particular, if we want to develop a putative super-Turing 

model, the state space of the relevant model is important. In 

particular we must ask: does it involve a continuous quantity? Are 

continuous state spaces plausible?

(e) and (f) are sufficiently linked that we can discuss them 

together. Turing motivates these finite aspects of his model by 

suggesting that if the computor were to use an infinity of 

symbols, some would be arbitrarily close together in shape (or 

however they are to be recognized as distinct) and thus be 

indistinguishable. It is important to realize (in the light of the 

distinction between computation by symbolic manipulation and 

computation by measurement discussed below) that Turing’s 

assumption that symbolic configurations must be of a certain 

finite fixed bound is not  necessarily violated by certain kinds of 

“infinite” devices.

Each of (a)-(f) above can in principle be modified without 

modifying the finiteness of the other conditions. (In practice, 

(e) and (f) stand or fall together, but this is just a matter of 

making a reasonable choice of “calling convention” or protocol.) 

As we shall see below, our typical putative super-Turing model 

tries to obtain its power by relaxing some of these subconditions 

and keeping others.
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Hence, i t might be rejoined that the finiteness condition is so 

basic to any understanding of (effective) computation that any 

putative model of computation that denied it in any form is 

radically different enough to be unworthy of consideration. Our 

answer to this is simple: we wish to give as “fair a shake” to 

putative super-Turing models as possible. Obviously, the more ways 

a model fails to be finite, the less plausible it becomes.

After all, what  stops a “presentation” or “use” of a completed 

infinite? We admit this latter is unlikely, but why rule it out a 

priori , especially as we shall see,  what counts as an infinite 

“object” is not obvious.

The second feature of the Turing machine model to discuss is its 

“computational protocol.” This is how a Turing machine is to be 

interpreted as computing, and thus we can see how “protocol” can 

be motivated as a feature under all three of the above conditions. 

Since the Siegelmann network we discuss later makes essential use 

of its protocol, it is vital that we also specify the protocol of 

the Turing machine. Moreover, it is also a good engineering 

consideration: without the protocol the models do not describe a 

process of any use .  A model of computation would be completely 

unrealistic if we were told that it was merely a matter of 

“reading off” in some unspecified fashion some “infinite” property 

of some arbitrary system as the computation. Further, by 

understanding the operations of a machine as it transforms well 

specified input to well specified output, we can see that the 

machine may well be viewed as computing something or other.

In Turing’s original presentation, the “calling convention” (one 

form of protocol suitable for “procedural” or “imperative” 

computing) involves a scratch space. Turing decides to interleave 

scratch with output (1964 [1936], pp. 121). We could pick another 

protocol; for instance, that the left of the initial position of 

the head is for scratch and input, and the right for output. This 

choice is not critical. So long as there is an unbounded amount of 

“storage” for any such protocol, the model captures the same class 
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of computable functions. Our presentation of the Turing machine 

model also involves the use of special computational states, the 

“halt” states (“accept” and “reject”), entering which ends the 

computation. This  halting is also a sensible part of the protocol 

as it makes “obtaining the output” easier. We use the “accept” and 

“reject” states when the machine is used to recognize languages.

Our third feature can be put in terms of the distinction made in 

the 1950s and 1960s between computation by measurement vs. 

computation by symbolic manipulation. The former is also sometimes 

referred to as “dynamic” computation. Making a model for use in a 

wind tunnel, then physically simulating a system of interest, etc. 

is an example of the former sort of computation. The Turing 

machine model is an example of a description of the latter. It 

must be said, however, that upon closer inspection, this apparent 

distinction is difficult to pin down. In fact, the question of how  

exactly  one should distinguish the two approaches to 

“computations” is a key issue in the later discussion of the 

Siegelmann proposal. Intuitively speaking, the Turing machine 

model does not characterize something that computes by 

measurement, because in general the constructions performed by the 

Turing machine are not of the “same form” as what is being 

described. For instance, the differential equations describing 

flow of air over an airplane which are solved by a Turing machine 

are not of the “form” of an airplane and atmosphere in the way 

that a scale model plane and a wind tunnel would be. From the 

above we can see that this feature is motivated from engineering 

as well as computational considerations.

Symbolic computation connects directly to our feature of 

procedural computation. The inclusion of this feature can be 

motivated by noting that it r eflects a virtue of the Turing model. 

We include it for this reason, even if it largely has to be given 

up later on.

The Turing machine works procedurally (or imperatively) as opposed 

to functionally or “processually”. As is well known, the 
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specification for a Turing machine includes its “program”, a 

sequence of tuples which form instructions which it is to follow 

in order to compute. (All procedural computation is symbolic, but 

not conversely.)

Communication is our next feature and can be motivated much the 

same way as the procedural form of computation feature above. 

However, it is also vital from the engineering perspective - we 

cannot take a proposal for an artifact seriously unless we are at 

least given a partial sketch of how it is to function.

Douglas Hofstadter’s (1979, pp. 562) remark concerning 

communication in the context of the Church-Turing 5 thesis (italics 

in original ) is part of the motivation for our inclusion of this 

feature:

“Suppose there is a method which a sentient being follows in order to sort 
numbers into two classes. Suppose further that this method always yields an 
answer within a finite amount of time, and that it always gives the same answer 
for a given number. Proviso: Suppose also that this method can be 
communicated reliably from one sentient being to another by means of 
language. Then: Some terminating FlooP program (i.e. general recursive 
function) exists which gives exactly the same answers as the sentient being’s 
method does.”

The “instructions” by which the Turing machine is to compute (i.e. 

write symbols, move the tape and change state) are communicable in 

human languages (including, now, programming languages or 

5 We shall not debate the various forms of this thesis in the present work. We 

shall take it to be a thesis about how to understand “effective computability” 

- normally by identifying it with Turing-computable functions or any of the 

extensionally equivalent understandings. See Odifreddi (1989) for a survey of 

nuances and subtle variations on the thesis. Some of the work concerning 

super-Turing computation takes itself as finding counterexamples to the 

thesis.
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mathematics) 6. Clearly, however, as one can describe noneffective 

procedures, the putative procedure has to meet pretheoretic 

notions of effectiveness. Nevertheless it is an important 

consideration when we recall that Turing’s approach originates as 

analysis of human computing (Sieg 1994; Sieg 1997; Sieg 2000; 

Gandy 1980; Gandy 1995 [1987]). It seems likely that a non-

communicable method is an uneffective one, (as Hofstadter would 

suggest), but this is by no means certain.

Next we shall discuss the question of representation 7 of what is 

being computed. Turing considers easily understood representations 

(see later) and demonstrates their merits with a clear discussion 

of their properties and those of the computor responsible for 

reading and writing them. The feature of representations is 

absolutely vital for engineering considerations. Not only must we 

know how the functioning of the system proceeds, we must also know 

how properties of the system are used to solve the problem we wish 

to solve. For example, in civil engineering we might design a pipe 

system. We have to pick a material for our pipes that has certain 

desired properties: for example, we might want it to have a 

certain tensile strength, a certain (lack of) solubility in water, 

and a certain cost per unit mass. The engineering proposal for 

using this material must illustrate that the material selected has 

these virtues. Similarly, the properties of a computer being 

discussed must be the ones relevant to computation. This is 

precisely what representation is about and hence is the key 

engineering feature. 
6 Since the present author has almost no musical talent whatsoever, we shall 

ignore Hofstadter’s (fanciful, even by his own admission) possibility that 

there is a musical procedure for (e.g.) deciding mathematical statements.

7 In this work, we use “representation” as it is used in electrical 

engineering: state of a system used to represent some external object or its 

properties. For example: the pattern of voltages (say) in a circuit 

[high][low][low][high] represents the bit string “1001”, which in turn can 

represent (say) the number 9 in the usual fashion. This usage should not be 

confused with the notion of “representability” and related terminology as used 

in proof theory.
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The inclusion of the feature of representation also can be 

justified by noting that in order to compute at all one needs to 

compute something  and have access to the appropriate parameters 

and data for the computation in question. Representations allow 

one to do this.

We shall restrict ourselves in the case of the Turing machine to 

representations of functions of natural numbers to natural numbers 

(and of course natural numbers themselves), as other sorts of 

functions computable (or tasks performable) by the Turing machine 

can be reduced to such. It is possible, as we now know, to reduce 

the number of symbols used by the Turing machine to two, commonly 

written 8 as “0” and “1”. Thus we can represent a number by writing 

its numeral in an appropriate binary string. A Turing machine with 

more symbols can make due with less internal state than one with 

less and conversely, but the computational power of all these  

variations is the same. It is only required that the number of 

distinct symbols be finite (as we have seen above) and at least 

two. A function to be computed by the machine is represented by 

the class of transformations from input to output via internal 

state changes. Any given sequence of such transformations is a 

particular computation of a function on its argument (input). The 

internal state changes can loosely be regarded as the steps 

performed in the computation.

Our next consideration of note in the Turing approach is 

“generality”. The universal Turing machine requires us to “need” 

only one Turing machine. This virtue we would like to extend to 

any putative super-Turing model, and so we included it in our list 

of features. It is also a useful engineering feature: engineers 

like machines that have the virtues of their predecessors.

8 Curiously, this way of putting it is more vital to what follows than it 

might appear. Our way of describing matters acts as an “intuition pump” that 

we know how representation of numbers, etc. works in a Turing machine. Or, in 

any case,  our descriptions shows  more is known about the Turing-style 

representations than those of Siegelmann model we analyze in what follows. 
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Our next consideration is perhaps the most unusual for some 

readers. This is the “timelessness” of the Turing model. 

Timelessness is included as a feature “in retrospect.” That is to 

say, in order to understand how the Siegelmann model extends the 

Turing one, we need to discuss its use of the time variable. In 

particular, we need to know about how the time variable interacts 

with the Siegelmann protocol, so the feature of “timelessness” is 

also motivated as a feature under the perspective of engineering.

The Turing machine may calculate for any finite period of time 

whatever. (Although it is not Turing computable to determine when 

infinite looping occurs, we consider a machine that goes into an 

infinite loop to have “stopped calculating” after a finite time. 

All we mean is that the machine cannot, for instance, decide the 

Fermat conjecture by trying all aleph null instances, as that 

would require infinite time if done at a constant rate.) We have 

already met the feature of “time” above in the discussion of 

“protocol”.

We close this subpart with a discussion of what might be called 

“hierarchy.” Hierarchy is another virtue we would like to 

recapture in an extension to the Turing machine model.

Kozen (1997) discusses computability in the fashion of 

increasingly complex languages being recognizable by given types 

of automata. He discusses how finite automata can recognize 

regular languages, how nondeterministic pushdown automata can 

recognize context free languages, and how Turing machines can 

recognize type 0 languages, etc. Since all regular languages are 

context free, and all context free languages are type 0, each 

model of computability recaptures the power of its predecessors. 

We suggest that a putative super-Turing model ought to fit nicely 

into this hierarchy. In Figure 1 (below), A represents the set of 

regular languages, B the context free languages, C the type 0 

languages, and D some putatively super-Turing set of languages. 

(Alternatively, one can view these sets in terms of their 

respective automata.)
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B
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D

A

B

#1

C

#2

D

Figure 1: Hierarchy. 

In F igure 1 part #1 reflects the desired hierarchy; #2 represents 

a putative super-Turing model that does not fit nicely into the 

hierarchy.  

Our final task in this part is to summarize several of our 

findings in more exact terms. From this approach many similarities 

and differences between the Turing machine and the Siegelmann 

model stand out clearly. We can take each model to be discrete 

dynamical systems describable as a structure. Taking as starting 

point the work of Kozen (1997), we get rid of unneeded parts of 

his presentation and modify it slightly for ease of understanding 

and integration with our purpose. Thus, a Turing machine and its 

input are describable as a 7-tuple: M=<Q, Σ, δ,s,t,r,i>.

Here, Q is a finite fixed set of states. Intuitively these 

correspond to parts of the machine or the computor and his aids. 

(In the latter case, one can imagine the computor keeping track of  

his stage in the computation by a further piece of paper or the 

like.) Generally one can describe these fixed states simply by 

giving each a natural number.

Σ is the alphabet  of input, output and scratch, in our case 

{“0”,”1”}. It is important that this alphabet is fixed in advance 
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of the construction of the Turing machine in question, that it s 

finite, and that each is letter bounded above in size by a finite 

amount.

δ is the transition function  between states, a function of the 

form: Q x Σ −> Q x Σ x {l,r}. Intuitively, this function (given a 

state q and a symbol s), returns a new state q’ and a new symbol 

s’, as well as tells us to move the tape head (l)eft or (r)ight 

accordingly. s’ is the symbol to write, q’ the new state of the 

machine. Very often it is fruitful to state this function in the 

form of a giant table of tuples of the form 

<state,symbol,state’,symbol’,direction>. This table that 

characterizes the transition function can be viewed as a series of 

instructions. This illustrates how the Turing machine can be 

viewed as a procedural form of computation. Note that this table 

must be finite and since  it describes a function by ensuring 

that no two tuples begin with the same state and symbol, this part 

of the description limits us to deterministic Turing machines.

Further, since the state table is in the above form, the 

instructions (and hence our description as a whole) are in 

principle human communicable.

Finally, by using an appropriate transition function and special 

states (see below) we can make a Turing machine a universal Turing 

machine and thus make it general in the appropriate way. (We shall 

not construct one here.)

s is an element of Q, called the start state.

t is an element of Q, called the accept state. This is one of our 

two halt states. The other, r (also an element of Q), is called 

the reject state . Needless to say, t ≠ r if the machine is used to 

recognize languages.

i is a finite string over Σ* , the initial tape contents . We 
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assume that the rest of the unbounded tape (to the left and to the 

right of the string) is blank. Turing’s remarks about 

representation make this a suitable elucidation.

We also require that the machine stay in the reject state or the 

accept state once entered. This requirement makes interpreting the 

function calculated by the machine easier to figure out; it 

corresponds to part of our protocol above. Similarly, we can 

describe (by suitable restrictions on δ) the other aspects of the 

protocol (e.g. how to place scratch, etc.).

Finally, it is interesting to note what happens to hierarchy in 

our descriptions . If we allow no scratch space at all (and hence 

the input tape is read only), the Turing machine is just a finite 

automaton, incapable of recognizing more than regular languages. 

If we add a stack (i.e. [approximately] a unidirectional tape with 

read/write access only to the first element) and nondeterminism 

(as understood in computer science), then we have a push-down 

automaton. Notice that the machine model hierarchy, when described 

in terms of implementation details, is not as uniform as it is 

when described in terms of functions computable (or languages 

recognized).

We have discussed some features of the Turing model of computation 

that are important to have in mind when contrasting it with 

putative super-Turing models. Next we discuss super-Turing models 

in general.
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Part 2: Remarks on Super-Turing Computation in General

In this section we discuss briefly the purpose behind much of the 

research into super-Turing computation. In so doing, we describe 

motivations for this research, and define additional terminology 

from this field.

Throughout the present work, we use the term "super-Turing 

computation" as a synonym of "hypercomputation" or 

"hypercomputing" as used in some parts of the literature. As may 

be inferred from its name, super-Turing computation is computation 

of a sort that "goes beyond" Turing's formulation of computability 

and computation. For the most part, this is expressed in terms of 

new functions being computable, or new numbers being computable, 

or new languages being computable, etc. Since these are relatively 

interchangeable in many cases (such as in the original Turing 

machine presentation itself) it is understood that one 

characterization does not rule out applicability to others. For 

example, if one particular super-Turing model 9 is stated in terms 

of computable numbers, it is usually relatively straightforward to 

transform the model so that it applies to computing (or 

recognizing) languages instead. The fact that under most (if not 

all) known models of computation these are equivalent should not 

blind us to at least the conceivability of them not corresponding 

in some model.  

"Going beyond" means for our purposes only computing members of a 

wider class. We are not interested in matters of computational 

complexity in this work. "Model" is used in the sense it is used 

in the philosophy of science (for our purposes the use in Bunge 

1999 is sufficient). In other words, a model is taken to be a 

(usually) mathematized theory of a concrete system, process or 

thing 10 . A super-Turing model of computation is thus a theoretical 

model  (like the original Turing model) of the process of 

"computing". A "Turing-equivalent" model is one that is equivalent 

with respect to computational power to the Turing machine model. 

9 We shall explain this notion as we shall use it in due course.
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Siegelmann’s work seems to have a tension between being a purely 

mathematical theory and being a model of something in the sense we 

have just described. In what follows, since the Turing model is of 

something (human computability or computing) “concrete”, we also 

take Siegelmann as analyzing something putatively “concrete.” It 

is not (for the reasons we discuss) immediately obvious to what 

the Siegelmann model refers to beyond this sketch. Furthermore, we 

take Siegelmann’s model as literally as possible. Since she 

discusses signals and related matters, we shall use these to help 

understand intended implementations and thus her model.

This leaves us with "computing" and "computation" as undefined 

terms. We do not intend to define these, for any definition would 

likely beg the question for or against super-Turing models. 

Nevertheless, we answer some questions about what is and is not a 

computation or computing device in part 4 of the present work. 

(“Computability” is just the name we attribute to what is capable 

of being computed. “Human computability”, for example, is what is 

computable by humans.) We also presuppose that the computations of 

the super-Turing model are at least intended to be "effective" in 

some sense or other. Again, we shall not argue over this matter. 

Instead, as will be discussed later in greater detail, we shall 

assume that "effectiveness" is prima facie guaranteed by a super-

Turing model which is an extension of an existing Turing-

equivalent model. This will not always seem plausible, but it will 

at least give us a way to begin. 

The various super-Turing models make use of differing assumptions 

about where to modify the Turing machine model. Hence, they also 

differ in motivation for their introduction as models of super-

Turing computation. We focus on the assumptions used in our 

particular super-Turing model case study and must stress that 

there are other features of the Turing machine model that are 

subject to debate in other super-Turing models. As we are limiting 

ourselves to discussions of only one model in this work, we shall 

not discuss these other features except implicitly to note how the 

Siegelmann model we discuss is more (or less) plausible compared 
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to other models. For example, some super-Turing models make use of 

infinite inputs or outputs. The Siegelmann model does not; we 

comment on how this is part of an attempt to keep as many of the 

features of the Turing model as possible and to modify it 

minimally in order to putatively recognize more languages (and 

compute more functions, etc.).

Finally, we use "putative" in various places to emphasize the 

contentious nature of many super-Turing models. This is necessary 

because the field of super-Turing computation is controversial. 

Our goal is to give one model the benefit of the doubt.

We have met some terminology and the motivation behind super-

Turing models in general. Next we shall meet a specific example of 

such, the analogue neural networks of Hava Siegelmann.
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Part 3: Description of Siegelmann Analogue Neural Networks

In this section we discuss a representative promising super-Turing 

model of computation, the analogue neural networks elucidated by 

Hava Siegelmann (1999). Since this approach to computation  is not 

as well known as the Turing machine model, we shall discuss it in 

substantial detail. In passing we shall refer to our features from 

part 1 to prepare us for the criticism based on these features in 

part 4.

Siegelmann introduces her version of neural networks on page 19 of 

her monograph Neural Networks and Analog Computation : Beyond the 

Turing Limit . A neural network is considered to be a finite 

collection of N processors. These processors are elementary in the 

sense that they are not further decomposable, computationally 

speaking. Each processor has a local state x i (t). “t” here 

represents a discrete time index. We assume that at time 0 all the 

weights 11  are initialized, the processors (nodes) are connected in 

an appropriate fashion, and then the input is fed in. The network 

is then presented with a (representation of a) vector u j  of 
11 A weight  of a connection between nodes in a neural network represents some 

quantity associated with the embodiment of the nodes or their connection (e.g. 

a resistance, potential, etc.). As noted above, the precision of the weights 

is of critical importance for the computational capacities of the network. 

Interpreting (as we are) neural networks as a model of computation, these are 

a part of the structure of the network that allows one to calculate, 

representing parameters of the calculation. The weights, together with the 

structure of the network and the activation function, determine which 

function(s) each network computes. Because of the immediately preceding 

considerations, it is difficult to say whether or not the operations of the 

Siegelmann network are human-communicable. If we allow the conceit that the 

nodes should be regarded as unanalyzed computational units, then we will grant 

that Siegelmann’s networks perform human communicable operations. After all, 

she gives both a “network style” representation of a particular network and 

one that resembles a procedure in a procedural programming language. We 

include this point primarily to draw attention to the very strong proviso that 

is required in order to state the previous conclusion. That is, we are 

assuming that Siegelmann’s model has left the operations of the nodes 

unanalyzed. We shall discuss this further in our criticism.
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dimension M at each time step. Each component of this vector is an 

element of {0,1}. (See the protocol below.)

Thus at each step the network behaviour can be described as 

follows:

€ 

x i ( t + 1) = σ aij x j ( t ) + bij u j ( t )
j = 1

M

∑ + c i
j = 1

N

∑
 

 
  

 

 
  .

Here we call the a ij , b ij  and c i  the weights of the network. These 

have an initial value set by the net’s designer. Depending from 

which domain these weights assume values, the network has 

different computational power. We shall focus on the case where 

the weights and activation values 12  are permitted to assume 

arbitrary real numbered values, as this (Siegelmann claims) is the 

case in which the network can perform super-Turing computations. 

This infinite precision is the first area where the Siegelmann 

model makes assumptions concerning infinite properties. The σ 

function in the above equation is called the activation function. 

Activation functions are of critical importance in what follows as 

they are the second  of the assumptions the model makes concerning 

the infinite. Siegelmann discuses several of these. One important 

one is the truncated linear function: 

σ(x) = 0 if x < 0

= x if 0 <= x <= 1

= 1 if x > 1 

(See pp. 20-21 of her monograph for other activation functions.) 
12 Activation values  are the time indexed values associated with a given 

node: each of these is a function of the weights of the nodes connected to a 

given node. In Siegelmann’s networks these are linear combinations. The 

threshold functions then determine what a given node should transmit to 

the nodes to which it is connected, based on the given activation value at 

each time step.
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Note carefully that this choice of function corresponds to a 

hypothesis that the Siegelmann networks are infinitely sensitive.

Also note that neither hypothesis concerning the infinite requires 

infinite symbolic configurations of the sort that Turing rules out 

in the case of the Turing machine. Finiteness of types (e) and (f) 

above are not violated. This is so because the Siegelmann style 

networks do not  compute by symbolic manipulation.

After selecting an activation function, we then pick l  of the 

processors, and call those the outputs of the network. These 

transmit the value of the representation of the activation 

function of the l  processors  along an output line, as we describe 

below.

Siegelmann describes a protocol by which the dynamics of such a 

network can be used to compute functions and recognize languages. 

This involves restricting the input lines to two, called “data” 

and “validation”. The data line (D) carries a binary signal into 

the network. It goes high to indicate “1”, low to indicate “0”. 

The validation (V) line indicates that the data line is active, 

going high if input is present and low otherwise. The input to a 

network is coded as a signal along these two lines in the expected 

way. (As usual, the signal can represent numbers, characters, 

etc.) For example, if we wanted input of the number 42 ten , we 

would at time zero raise V high. Then at times 0...5 we send bits 

1,0,1,0,1,0 respectively along D and then at time 6 drop V to low 

and hold it low forever afterwards.

By the same token, there are two data and validation lines, G and 

H, which function analogously to the input lines, but are used for 

output.

Thus, one can exactify classification in the expected way: a word 

is classified by a network (in time r with given appropriate 

weights) if starting from the initial state, one presents the word 

to the input lines, the output validation line H is high (has 

value 1) at time r and 0 at all times before. We read off the 
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classification from G. If G is high at time r, then the word is 

recognized, rejected if G is low. 

From there, it is not too difficult to construct an appropriate 

elucidation of acceptance of a language. In particular, a language 

is accepted by a network if every word in the language is accepted 

by the network (per above) and its complement rejected. It is this 

use of the networks that Siegelmann suggests is the most 

important. She says (pp. 24) she will only discuss computations of 

functions directly when the Siegelmann network coincides in power 

with the Turing model.

Finally, we can show how networks compute functions. A (partial) 

function ϕ(x) is computable by a given network if for every 

argument x presented to the network according to the protocol 

above:

(1) when ϕ(x) is undefined, H stays low 

(outputs all zeros). G may fluctuate between its two

states but since H never goes high, this is irrelevant

from the perspective of “using” the network.

(2) when ϕ(x) is defined, there is an r, the response time

such that:

G outputs the successive digits of ϕ(x) 

from times r to r + |x| - 1, where || is the

length of the bit string coding x. 

and

H remains high from times r to r + |x| - 1,

and is low at all other times.

See below for a block diagram of a Siegelmann-style network.

Page 26 of 61



D V

......

......
......

......

clock

...... ......

.........

...

G H

Figure 2: Block Diagram of General Siegelmann Network

Now that we have described in basic outline how a Siegelmann style 

network is to function, we discuss a family of such networks that 

supposedly do super-Turing computations.

Siegelmann introduces a system of three networks (pp. 67) which 

are designed to calculate the usual output with range in {0,1} 

from a network of wires and logic gates and thus simulate families 

of circuits. These three networks are described as the input 

network (which takes the appropriate input to the simulated 

circuits and stores it accordingly), the retrieval network (which 

takes an appropriate input from the input network and simulates it 

on the appropriate circuit), and a synchronization (and output) 

network that coordinates the first two networks and performs the 

appropriate global output. It is the retrieval network that is 

discussed in most detail, as it is the only part that performs 
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super-Turing computations and is also the most difficult to 

construct. The motivation (explained on pp. 16 of Siegelmann’s 

book) for this particular system is that non-uniform circuit 

families are equivalent to non-recursive languages.

Page 65 of the monograph performs the construction of this network 

for the reader. The notation x i + = f(some other nodes or 

properties thereof) means that at node x i  at time t+1 it 

calculates 13  the function f() given the values of the other nodes 

at time t. u represents the input of the network, presented at 

time t = 0. It consists of n 1s, where n is the length of the 

coded circuit family. In other words, n is the number of 

significant figures of C, the encoded circuit family to be 

simulated, in an appropriate base 9 representation. This 

representation is chosen here in order to facilitate recognition 

of values. Rather than using a directly continuous operation, the 

base 9 representation uses a Cantor set 14  style.
13 How this calculation is performed is not clear. Siegelmann seems to suggest 

that this would occur by an aspect of the network measuring some appropriate 

property of the relevant part of the rest of the network system.
14 Cantor set encodings are used by Siegelmann in several places of her work to 

help avoid the problems with recognizing infinite precision numbers. Rather 

than having to distinguish between two close values by reading all the bits 

representing a value, the Cantor set encoding enforces “gaps” between” valid 

encodings.  She says (pp. 34), concerning encoding of a stack as a binary 

number: 

“For example, in order to describe the first bit of the stacks 011•••1 and 100•••0, one must read 
the whole number.”

This is especially important with infinite sequences of bits, as the usual 

encoding is not one-one. So instead we use base 9 (as in the example of 

Siegelmann’s) as follows. We fix the digits used to represent parts of 

circuits to the set S = {0,2,4,6,8}. Then we use only the real numbers q of 

the form: 

€ 

q =
ai

9 i
i

∞

∑  where each of the a i  is an element of S. Then the coding 

gives us the “gaps” property, since the numbers used now are sufficiently far 

apart; i.e. we have avoided numbers like 0.1111111... ten .
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By picking certain strings of these base nine digits, Siegelmann 

can have the network she constructs do the appropriate simulation. 

She assumes that the gates occur at d+1 levels, where the input 

nodes to the circuits are at level 0, the single output at level 

d. Each gate has inputs only from the preceding levels and the 

value it computes is an input to the following level. (Different 

circuits may have different values of d.) A family of circuits 

then is a set of circuits such that there is a circuit which 

computes on inputs of length n for every natural number n. On page 

62, she shows us a good way to encode these families of circuits, 

starting with how to encode a single circuit. Each level i begins 

with the digit 6. Levels get encoded sequentially, bottom to top. 

Each level has its gates encoded successively, 0 to indicate the 

start of a gate, a two digit sequence from {42, 44, 22} to 

indicate {AND, OR, NOT}, respectively. Then a sequence of digits 

over {2,4} encode which gates feed into the current level’s gate. 

The jth position of this sequence is 4 if and only if the jth gate 

of the previous level feeds in the current gate, 2 otherwise. From 

there we can then encode entire families of circuits by placing 

their encodings sequentially, delimited by the digit 8 (placing 

each circuit encoding in reverse order to simplify proofs - this 

is not important for the simulation). 

Once that is done, this completes the requirements for the 

constructed network, which w e reproduce here:

xi + = σ(9x 10-i) [0 ≤ i ≤ 8]

x9+ = σ(2u)

x10+ = σ(Cx 9 + x 0 - x 1 + x 2 - x 3 + x 4 - x 5 + x 6 - x 7 + x 8)

x11+ = σ((1/9)x 12 + (2/9)(x 1 + x 3 + x 5 + x 7)  - 2x 13)

x12+ =  σ(x 11)

x13+ =  σ(u + x 14 + x 15)
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x14+ =  σ(2x 13 + x 7 - 2)

x15+ = σ(x 13 - x 7)

x16+ = σ(x 12 + x 7 - 1)

10
0

1

2

3 4 5

6

7

8

9

u

11

12

13

14

15

16

output

C

Figure 3: Example Siegelmann Network.

An important feature to note about this network is that it is 

recurrent. Note also we (and Siegelmann) have not depicted the 
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protocol directly, as the above part is only meant as a piece of a 

larger network. Siegelmann also emphasizes that all the weights, 

save the one marked C above, can be understood as being 

describable as rational values rather than arbitrary real  numbered  

values. Since this weight can be an arbitrary real numbered value, 

it can do its trick by simply having the non-Turing computable 

arrangement of gates stored in it as a weight. (This makes it not 

too surprising that the Siegelmann networks can do one  thing 

super-Turing: whether they can compute other super-Turing 

functions is not discussed.) How this works to perform super-

Turing computation is simple: interpret the value of C as a non-

Turing computable real number: all languages are recognizable in 

exponentially sized circuits, where size is understood as the 

total number of gates (Siegelmann 1999, pp. 16). Note that each 

circuit family to be simulated requires a different weight 

assignment C, and hence a different network. Hence, each language 

(at least on this approach) also requires a different network.

She does not give the proof of the above result herself, but 

instead appeals to a volume by Balcázar, Díaz and Cabarró (1995; 

hereafter B-D-C). However, this volume does not support her claim 

as fully stated. 

B-D-C's text is primarily about computational complexity, and thus 

is outside our current subject. In particular, they only make use 

of a super-Turing model (Turing's own abstract "oracles" from his 

1938 paper) in order to speed up computation. Siegelmann by 

contrast interprets their result (i.e. proving a complexity bound 

for simulating certain circuit families) as concerning super-

Turing computation. This would only be true if the construction of 

a given network of circuits corresponded to a super-Turing 

computable function. B-D-C do not discuss these possibilities even 

in passing; the introduction to their work makes it clear that 

they are not considering matters of computability per se . 

Siegelmann's appropriation of their results is thus in error. In 

particular, we cannot know if Siegelmann's claim that her networks 

can be set up to recognize all possible languages over {0,1} *  is 
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justified from this  example. By contrast, a general proof 

concerning all  of the Siegelmann networks  is provided (earlier in 

the chapter) which demonstrates the equivalence of these networks 

with polynominal advice Turing machines. Here she makes essential 

use of her result that linear precision suffices - this avoids 

using infinite numbers of bits ‘all at once’ (pp. 60):

“For this, we use the observation ‘linear precision suffices,’ which guarantees 
that if a network N computes in time T(n) then its ‘T(n) truncated version’ (to be 
formalized later) computes the same on any input of length n. T-truncated 
network [sic] can be specified with an advice of O(T) bits only; this completes the 
simulation.”

(Siegelmann’s proof of the linear precision bound can be found on 

pp. 68-70 of her work. Note: since the bound proved is of a 

certain complexity class only, the linear precision bound is of 

necessity inexact unless calculated for a given network. This 

would make using it rather difficult without a more detailed 

calculation. We assume in the rest of this thesis that the 

precision needed can be calculated exactly.)

By contrast, to simulate an advice Turing machine on the network, 

we Cantor-encode the advice for inputs of length n into a weight. 

It is thus a relatively straightforward matter to construct a 

network which retrieves ( as in the above example) the advice from 

a weight and then passes along the input string and a weight to a 

Turing-machine simulation, and hence computes a function 

accessible only to an advice Turing machine 15  with appropriate 

truncation.

Returning to our specific case, it would appear that t o make a 

non-Turing computable pattern of gates it one would need 16  an 

15 This is subject to a rather large proviso that we debate later on concerning 

infinite time. Nevertheless we have presented Siegelmann’s argument as it 

stands, regardless of its plausibility.
16 It has been suggested in the literature that one can make do with simply an 

irrational Turing-computable number (e.g., π), but this has never been proved 

to this author's knowledge. We ignore this possibility in what follows. 
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infinite circuit collection in a rather unusual pattern. Later 

Siegelmann suggests that exponential advice is required. We shall 

return to this in our criticism.

It is fruitful to close by elucidating the Siegelmann network 

description as a 5-tuple N=<Q, Σ, δ,i,r>, paralleling our discussion 

in part 1 of the Turing machine.

Q is a continuous state variable. For simplicity we are pretending 

all the nodes of the Siegelmann network share one state space. We 

can do that by reducing all the activation values to a single real 

number for any given network. We do this by interleaving  each of 

the digits from each activation value: 0.a 1a2a3a4... and 

0.b 1b2b3b4... becomes 0.a 1b1a2b2a3b3a4b4... in the case of a two 

node network. A similar procedure can be done for any Siegelmann 

network, as they all have a finite number of nodes. It is of no 

benefit to use a high-dimensional state space to elucidate the 

behaviour of the Siegelmann network for our applications, as the 

trajectories through such are no more illuminating than the ones 

through the one dimensional case. Further, by using a one 

dimensional state space all Siegelmann networks are represented as 

being similar in structure. This idealization of the description 

makes comparing them all as a class to the Turing machine more 

straightforward. It is also important to realize we are 

simplifying matters (see above) by considering that the “linearly 

truncated” versions of the network actually make use of dynamics 

that just do not move into the appropriate part of the state space 

Page 33 of 61



prior to the increased precision being needed 17 . In that sense one 

can see the state space used as actually evolving. Of course we 

would like to know by what mechanism this occurs as it is a vital 

part of understanding Siegelmann’s model. More on this in our 

criticism, as Siegelmann does not attempt to answer this question. 

The non-denumerable state-space raises some questions about 

Siegelmann’s model we should answer. Doing so also shows some of 

the virtues and characteristics of the Siegelmann model. First: 

one might think Siegelmann’s example network shows that rational 

values alone suffice as weights. Since these can be represented as 

pairs of (represented) integers, there should be no problem here. 

But there is a parameter that is explicitly not  represented as a 

rational value.

As in usual representations of real numbers on computers 

(regardless of how this is to be accomplished), there will be ways 

to “break” the representation. A common one in ordinary computers 

is the breaking of the associativity of arithmetic. Since 

Siegelmann’s networks require real valued weights, unless infinite 

precision real numbers are available, there will be a pattern of 

17 For example, suppose a network calculates 0.17 (exactly) as an intermediate 

value. The evolving network would represent this (somehow!) as 0.17 at one 

time, 0.170 later, 0.1700 later still, etc. as more and more precision is 

needed. Note that with these networks precision is always finite and hence the 

networks always have a finite state space. By contrast, a non-evolving network 

has to represent 0.17000000... to infinite precision from the time the value 

is calculated (or is “put” in a weight). This requires a non-denumerable state 

space as each  of the digit after the (here) decimal point can in principle be 

different. This in spite of the fact that the computing of 0.17 exactly by 

some means may well involve a Turing-computable function. Note also that a 

typical Turing machine approach to computable real numbers involves 

representing them in some sort of functional way. (For example, we might 

represent π as a function in some programming language that sums an 

appropriate series.) This approach is not open to the Siegelmann network 

directly without modification of protocol because it apparently has to be able 

to perform operations on them directly. (This depends critically on how the 

representations of arguments and functions etc. is accomplished, of course.)
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parameters (inclusive of inputs) where the representation breaks. 

For instance, real numbers in existing computers produce 

mathematically incorrect results under certain circumstances when 

magnitudes being added are very different. Consider the following 

example (adapted from Hennessy and Patterson 1998; as usual sub 

scripts denote number bases.). Let x = -1.5 ten  x 10 38; y = 1.5 ten  

x 10 38; z = 1.0, all in IEEE single precision format. Then:

x + (y + z) = -1.5 ten  x 10 38 + (1.5 ten  x 10 38 + 1.0)

= -1.5 ten  x 10 38 + 1.5 ten  x 10 38

= 0
but:

(x + y) + z = (-1.5 ten  x 10 38 + 1.5 ten  x 10 38) + 1.0

= 0 + 1.0
= 1.0

This sort of problem occurs however the numbers in question are 

represented in any usual format, and is not exclusive to the IEEE 

representation. By contrast Siegelmann’s model, (were it 

implementable), would overcome this problem. It may be viewed that 

we are being uncharitable to the Turing machine model. Someone 

might claim that the sort of issue we are discussing here should 

be viewed as one for consideration of numerical methods and 

approximation theories and not for computability per se. We rejoin 

that our critic has not given an acceptable answer unless the 

defender of the Turing machine can show how it would overcome this 

issue. If Siegelmann’s networks were  of infinite precision as 

claimed, in a way this would render them super-Turing. We can call 

this a “weak” form of super-Turing computation. Siegelmann has 

given an otherwise Turing-equivalent machine model a feature it is 

not normally associated with - infinite sensitivity. (The 

plausibility of this is examined later.)

Second: can the Siegelmann network thus actually  calculate any 
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general super-Turing function 18 ? Here matters are not so clear. 

Since the protocol requires that any output be finite, the 

Siegelmann network can only compute the functions whose range of 

values can be expressed in a finite number of bits per value. It 

is thus not possible for it to output the values of certain 

functions which are calculable internally. Nevertheless, if 

infinite precision general real numbers are available as weights 

to a given network it is able to calculate certain restricted 

super-Turing functions. Note, however, that the current discussion 

does not yield a conclusion about how internal representations of 

the networks should be described. We are given some attributes of 

this representation, but not enough to develop the description 

further. More on this in the next point.

Σ is a finite input and output alphabet, usually {“0”,”1”}. Unlike  

in the Turing machine, we are not told what the internal alphabet 

is. It is not immediately clear that there even is one: if the 

Siegelmann network computes by measurement, then the internal 

representations of values are the magnitudes of some property or 

other, not values of some ‘alphabet’ at all. This raises further 

questions of “representations” as pertains to the Siegelmann 

network which are of vital importance. First of all, it is 

important to realize that (unlike the Turing model, which has 

finite representations throughout), the Siegelmann model has 

finite input and output, but infinite internal representations. 

How these representations function, i.e. how weights and other 
18 Note the difficulty even in computing a constant function. Since the weights 

of each node in a Siegelmann network are of infinite precision, outputting 

their value directly is impossible by the protocol described. This arises 

because such a constant is still an infinite precision number, and so 

outputting requires an infinite amount of time, followed by a signal to 

indicate that the output is finished. At best this would require a supertask. 

A suitable re-encoding would have to be found, and that is not suggested 

anywhere by Siegelmann. Moreover, such would have to handle rational values as 

well as surds, transcendental values, and (if noncomputable weights are 

allowed), even non-Turing computable numbers, like Chaitin’s constant. Of 

course, giving a finite representation of the latter sort of value cannot in 

general be done.
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numerical quantities get “embodied” in the network, is never 

specified by Siegelmann 19 . Internal representations of numbers in 

her example network (somehow 20 ) make use of Cantor sets , but it is 

not clear whether this approach is meant in general. This itself 

raises issues. If we recall her example of the stack encoding 

(part 3, above), it seems that her proposal  presupposes that the 

stacks are being “read” in binary then transformed to decimal and 

then compared. For example: 0111 two  = 7 ten  is compared to 1000 two 

= 8 ten .) See also the above discussion of the protocol as the 

questions of representation strongly interact with it. Second,  

while the network is given multiplication (after a fashion) and 

addition as primitive operations, their representation is not 

given either: i.e. which measurements are to be taken as 

performing these operations. The other characteristics of Σ are as 

in the Turing machine.

δ  is the transition function of the Siegelmann network. Normally, 

one would describe it as a set of activation functions of all of 

the nodes of the network. But, as we have seen, we can place the 

activation values into one state space, so only one transition 

function is needed of the form δ:RxNx{0,1} 2->Rx{0,1} 2,  where R is 

the set of real numbers corresponding to the 1 dimensional 

activation activation function. N is the set of natural numbers, 

used as our time index. The set of pairs over {0,1} is the set of 

possible inputs and validation line signals at the given time.

δ then “returns” a new activation value represented as a number 

from the set of real numbers (the new value in the activation 

space) and two bits corresponding to the data ready signal and the 

output line.

19 One should compare this to the Turing machine proposal where the fact that 

it calculates by symbolic manipulation makes the functioning of 

representations relatively straightforward, as we have sketched above. 
20 Since a set is an abstract object, strictly speaking one would describe  

the representation using them. 
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Not all transitions in the activation space are permitted, only 

those which respect the restriction (or its truncated version)

€ 

x i ( t + 1) = σ aij x j ( t ) + bij u j ( t )
j = 1

M

∑ + c i
j = 1
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∑
 
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 

 
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we have discussed. This function should not be understood as 

corresponding to a symbolic  calculation  in the usual Turing 

machine sense. Instead the state function of the Siegelmann 

network refers to a property of the system that evolves in such a 

way as to be describable in such a fashion. This is how we 

understand computation by measurement. 

Finally, note that since the state space of the Siegelmann network 

is nondenumerable, it is impossible in general to specify δ in 

terms of a table (like one often does in the Turing machine case). 

In fact, even the equations of the form mentioned above are 

elliptical in their description: in general, it is not possible to 

describe a Siegelmann network in completely finite terms, 

rendering its communicability suspect. It is, however (as we shall 

comment on below) possible, to describe the operations of the 

network somewhat procedurally if we grant the conceit that we know  

the exact value of the weights.

i is a finite string over Σ* , the input contents. Note that this, 

strictly speaking, requires the protocol to delimit the input from 

the rest of the signal into the network (which is an infinite 

string). This input is a binary signal familiar to engineers, and 

so the finite string description is suitable. Like the class of 

Turing machines with its universal member, there is a Siegelmann 

style neural network that is similarly general (pp. 56-57). We can 

feed in a coded description of a Turing machine via the input to 

the Siegelmann network in much the same way as with the Turing 

machine itself. But it is unclear whether there is a general 

network that computes what all the Siegelmann style networks do. 

If we take the “weak” reading of super-Turing computation 
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introduced above, then there is of course such a network - the 

same universal network that computes all the Turing computable 

functions. In the case of the “strong” reading, matters are not so 

clear: Siegelmann’s monograph does not attempt to answer this 

question. 

r is the time of calculation, characterizable as a (finite) 

natural number. The protocol needs this in order to manage the 

output properly, as strictly speaking, the Siegelmann network 

outputs forever. This parameter delimits the relevant portion. 

(This is exactly parallel to the input contents case.) The 

protocol requires the Siegelmann networks to continue operating 

forever, but after a finite time to assert that their output is 

ready. In this way they cannot perform the iterative output of a 

Turing machine except by fixing a protocol change by which 

successive approximations appear on the output sequentially. But 

these (without the change in protocol) would appear as one long 

output - the H flag would be high throughout. Nevertheless, since 

the protocol also requires output (if any) to occur after a finite 

time, the timelessness assumption of the Turing machine is exactly 

paralleled in this respect. It is also unclear who designs the 

output signal. Does the designer of the network have to know how 

many time slices into the network operation the signal is to be 

raised? Or, by contrast, does it work like the halt state of the 

Turing machine? In this case the “programmer” selects which 

state(s) will cease operation of the Turing machine or Siegelmann 

network, but does not have to worry about when these are to occur, 

merely which conditions are to provoke them. Siegelmann does not 

tell us. The choice between these possibilities is of vital 

importance in our debate on the merits of the Siegelmann proposal, 

as we shall see in part four.

Finally, hierarchy also requires that the Siegelmann description 

collapses to appropriate weaker models given appropriate 

restrictions. Having already illustrated how the Turing machine 

collapses, we only need to discuss how the Siegelmann model 

collapses to the Turing machine. This collapse occurs by reducing 
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the precision of the state variable to some finite fixed size. 

When this reduction is done, the Siegelmann networks (as intimated 

earlier) are no more powerful than Turing machines. Siegelmann 

proves this result on pages 33 to 57 of her monograph. It is also 

true that if the networks  use Turing computable real weights the 

Siegelmann network computes no more than the Turing computable 

functions.

Note how our features show up as restrictions on these 

descriptions as well. (Strictly speaking the features are 

restrictions and properties of what the descriptions refer to, but 

of course the descriptions ought to match the referents in 

question.)

We can now use the above description to make a direct comparison 

between the two models. In particular, the state spaces are the 

most interesting point of comparison. Not only is the state space 

of the (universal) Turing machine finite and the Siegelmann 

network infinite, the latter is nondenumerably infinite. 

Describing the two models in this fashion shows how likely it is 

that the Turing machine is a less powerful model. Nevertheless, 

the dynamical systems approach does not allow us to assess the 

plausibility of the model as a model of computation without 

discussion of what the state spaces are supposed to be state 

spaces of . We know some of the details of the Siegelmann network’s 

state space, but do not know how to understand (for instance) the 

subspace corresponding to the properties of a single pair of 

nodes.

One could, however, make some assumptions about the physical 

character of these nodes and their weights, leading to the 

selection of an appropriate state space. This again raises the 

question of idealizations. Suppose that we decide that that the 

electrical resistance of a material is to be the weight associated 

with a link between nodes. Classical electrodynamics elucidates 

resistance as an infinite precision real number, but there are two 

important facts to keep in mind. First of all, it is not clear 
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that the physical property actually varies continually. Until 

1900 or so, physicists thought energy levels of atoms varied 

continually. Planck is credited with the insight that this is not 

so. Resistance “depends” on lower level properties, so it would 

not be at all surprising if it is not actually a continuous 

property. But, we do not need to even entertain speculative 

physics to raise the second of our points, one we have raised 

elsewhere. It is not merely that we have to think of how the 

property is to be used to “hold” values, but also how this 

property interacts dynamically with others, as computation is not 

a static occurrence, but a process. Here is where our previous 

worries about sensitivity and such matters come into play. Thus 

this lower level description would also need a discussion of 

activation functions and how they “work”, in order to clarify how 

they describe evolution of the node-level subspaces.

We have introduced our case study of a putative super-Turing 

model, and seen a specific case where it supposedly performs 

super-Turing computation. We next examine where this Siegelmann 

network is substantially different from the Turing model to see if 

the assumptions it makes render it plausible as a model of super-

Turing computation.
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Part 4: Criticism of the Siegelmann Model

Our criticism of the plausibility of the Siegelmann model shall  

again consider: finiteness, protocol, symbolic computation vs. 

computation by measurement, procedural form of computation, 

communicability, representations, generality, timelessness and 

hierarchy.

Finiteness (or lack thereof) cannot be a direct reason by itself  

to reject Siegelmann’s analysis. Having seen that there are ways a 

certain sort of infinite object might be used in well specified 

ways to play a role in super-Turing computations, we now put this 

assumption through careful scrutiny. We examine both ways in which 

Siegelmann’s networks are not finite: precision and sensitivity.

First we discuss precision. As noted, Siegelmann’s networks 

require infinite precision “registers”. This precision either 

needs to be present from the moment of a network’s construction 

(how we are not told), or to somehow get built in as the network 

runs. The latter is what Siegelmann has called an “evolving” or 

“learning” system, and again a mechanism for this is not 

described. This is a grievous oversight, for it does not allow us 

to satisfactorily explore its plausibility.

Siegelmann is between a rock and a hard place on this issue. That 

is, if the network is finite at each stage, it is (more) 

believable; but it seems then to require a supertask to be able to 

do something super-Turing. On the other hand, if the networks are  

not so finite, it must somehow get the infinite precision (non-

Turing computable) weight from somewhere , and furthermore it must 

be infinitely sensitive from the moment of construction. (See also 

our response to Davis in Part 5.) 

Second, sensitivity: We have seen that Siegelmann’s networks 

require infinite sensitivity in order to make use of infinitely 

large “registers” (interpreting them in the usual way as 

containing a number between 0 and 1). Siegelmann uses Cantor set 

style encoding (in order to minimize the difficulties in 
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recognition between two close register values; see part 3). 

However, this trades one problem for another. How do the Cantor 

sets in turn get represented? Clearly they cannot be encoded in 

binary or the problem they are intended to solve recurs; one 

cannot have appropriate Cantor set representations in the same 

fashion in base two. However, if they are to remain in base nine, 

the usual problem (familiar to electrical engineers) of unstable 

states applies. (Many electronic components only have two stable 

states.) While we do not intend to suggest that the Siegelmann 

proposal must  be interpreted as one in electronics or electrical 

engineering, this is the easiest case to consider. After all, as 

seen in section three, Siegelmann seems to occasionally make use 

of this sort of terminology.

Protocol in the Siegelmann network is satisfactory in the way in 

which it performs I/O. However, the networks make essential use of 

the time variable, which renders it rather unlike the Turing 

model. This is simply a point of disanalogy, not a substantial 

disagreement. (See the discussion of the “timelessness” condition 

below for more.) However, in some applications (e.g. the circuit 

family simulation example we have discussed) the encoding of 

values in Cantor set style presents two problems. First, the 

interaction between those encodings and other encodings (e.g. of 

the input in a binary fashion) is an issue. Once number systems 

are being converted (particularly between an odd numbered base and 

an even one!) round off errors occur and a mechanism is needed to 

handle this. The “infinite” registers are needed as well, at the 

least to avoid the around off errors. Siegelmann does not discuss 

this matter. Second, and more critical, is her claim that the 

Cantor set style encoding of the structure of the circuit family 

allows us to save the need to (pp. 63):

“distinguish between two very close numbers; thus the analog neurons can 
retrieve circuits efficiently using finite-precision operations only.”

We grant that the Cantor set encoding does what she claims if  one 

can make the distinctions between different elements of the set 

{0,2,4,8} using finite precision. Here the problem of unstable 
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states mentioned above occurs and Siegelmann does not seem to be 

aware of the connection between this problem and representations. 

We do not stress this point too much as a somewhat analogous point 

can be made about the Turing machine. However, it is vital for 

Siegelmann’s network that these values be taken as numbers in base 

9. That is, in order to compute what she claims the network 

computes, Siegelmann needs to explain more how her representations 

are to work.

Also, her representations used in I/O make calculation of many, if 

not all, constant functions impossible by restricting output to 

finite bit strings. Without a discussion of a suitable protocol to 

convert (say) internal representations into pairs, or the like, 

most constants require infinite numbers of bits to specify.  This 

oversight probably stems from Siegelmann’s emphasis on languages 

(which only need one bit of output) rather than general functions.

We have no direct objection to calculations by measurement, as 

even to this day they are used (with the aide of ordinary 

computers!) in aeronautical engineering, for example. However, 

that said, Siegelmann’s networks (sort of!) require a measurement 

of a kind that can never be accomplished - one with infinite 

precision. Since even a tiny error reduces the computational 

characteristics of the Siegelmann network to a sub-Turing 21  class , 

this implausibility, coupled with the unlikelihood of an 

infinitely sensitive sensor (see above in our discussion of the 

plausibility of finiteness) is an idealization of the sort we 
21 In fact, for the sort of error she discusses on pp. 136-137, those of 

“catastrophic nets”, the networks fail to compute anything more than constant 

functions! We consider (in general terms) other forms of error - ones related 

to more “graceful” failure. (A catastrophic net is one containing only 

“forgetting neurons”. A “forgetting neuron” is a node with a certain 

probability p of failure which results in the node receiving state = 0 and 

regular updates with probability 1 - p. The value p can be different for each 

node and makes no difference to the result Siegelmann mentions. She also 

mentions that correlating the reliabilities of the nodes (with suitable 

assumptions)  makes no difference to the (lack of) computational power of the 

networks that use them.)
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cannot countenance. If, however, we are willing to live with 

infinitely precise construction with an error , we have another 

possibility. Namely, it seems plausible that one could form a 

construction along the lines of the two sides of an 1-1- √2 

isosceles triangle, and assert that the two sides were unit 

length, to within error e 1, and thus we produce a “real valued 

magnitude √2 to within an error e 2 (where e 2 can be calculated 

from e 1 in any of the theories of error one chooses). The problem 

here would be the generality condition (see below) that this 

violates. A √2 machine does not immediately permit construction of 

a √3 machine, not to mention any arbitrary real number (in either 

a strong or a weak sense). For example: how would one construct a 

( √π + 3e - ln 91) - √3 “machine”? (Nor do these “machines” lead to a 

strongly noncomputable real number in any straightforward way.) 

Our possible proposal is too ill-specified to consider further. It 

has been included simply for the sake of completeness. 

Procedural computing is our next point of discussion. As noted, 

there is a clear sense in which Siegelmann’s networks are 

sufficiently like the Turing model in this respect. We thus find 

no point of disagreement here and to the extent that they are 

different, we find the differences irrelevant.

The above is said with the caveats about our next concern, 

communicability, where the comparison is not as cut and dried. 

Siegelmann has greatly underspecified the operations of her 

network, and so its communicability is acceptable only  if we 

restrict ourselves to the level in which she discusses the 

operations of her network. However, it is unclear that we should 

do so for the reasons discussed below under “representations”. Let 

us examine the procedural version of the example network discussed 

above (part 3) and introduced on page 64 of Siegelmann’s 

monograph. We reproduce it with line numbers (and minor 

typographical changes, e.g. we use := as in Pascal to denote 

variable assignment) below in order to facilitate discussion:
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1) Procedure  Retrieval (C,n)

2) Variables  counter, y, z

3) Begin

4) Counter := 0, y := 0, z := C

5) While  Counter < n 

6) Parbegin

7) z := Gamma(z);

8) if Xi(z) = 8 then increment Counter

9) Parend

10) While  Xi(z) < 8

11) Parbegin

12) z := Gamma(z)

13) y := (1/9)(y + Xi(z))

14) Parend

15) Return  (y)

16) End

Xi() and Gamma() can be taken as “select left” and “shift left” 

operations respectively, as they have the consequence of 

performing these sorts of operation (familiar in binary to 

assembly language programmers) on numbers in base 9. We assume 

that we have access to the continuous versions of these operations 

Siegelmann gives (pp. 64-65), and focus on other issues of 

communicability raised by the procedure itself. On line 4, 

Retrieval() makes use of an unbounded “register”. As noted 

previously, Siegelmann makes no attempt to explain how this part 

works. Purely procedurally speaking, we are left with an operation 

that is not as decomposed as we would like and thus is 

unsatisfactory from the perspective of communication. Similarly, 

line 13 also makes use of an “infinite register”. It is true that 

these registers at any given run are only finite (albeit 

unbounded) in size. However, in order for this network to be used 

to simulate any  circuit family, and hence recapture the generality 

condition, the register would have to be larger than any possible 

circuit, that is, actually infinite in size. It must be said, 

however, that this objection is not as damming as the sensitivity 

objections we have discussed.

Page 46 of 61



However, there is an aspect of this procedure that is less 

debatable but is still sufficiently different from the Turing 

approach to render its communicability somewhat problematic. These 

are the Parbegin  ... Parend  blocks of lines 6-9 and 11-14. 

Siegelmann uses these to indicate that the operations within are 

to be understood as occurring simultaneously. Ignoring the 

relativistic problem that this raises (as it is a common 

assumption in electrical engineering), the question arises of 

whether “emulation by time sharing” would count as a suitable 

interpretation. We grant that it would, but note that it would 

require substantial additional set up and that it is unclear 

whether such belongs to the procedure or not. One would have to 

imagine some sort of “locking” protocol for concurrent programming 

and so on.

We move on to the question of representations. As noted above, 

there are several areas in which questions concerning 

representations interact strongly with other issues and we do not 

need to rework them here. However, a general question about 

representations remains to be asked. Since, as we have seen, we 

are not given any details about representation in Siegelmann’s 

model, we cannot evaluate her model fully and thus consider it to 

be underdeveloped for that reason. And yet this point is 

absolutely vital for evaluating the proposal’s plausibility as a 

whole. The criticality of this consideration can also be seen by a 

comparison to the Turing model: Turing argues for the plausibility 

of his representations. He contends that the subject of his 

analysis (human computation) can motivate restrictions on the 

representations, for instance, that they are bounded in size and 

hence, at least prima facie ,  cannot represent infinite objects 

like arbitrary infinite precision real numbers. As we have seen, 

however, there are (apparently) ways in which finite objects also 

have infinite properties, so it is not quite as easy as simply 

saying “finite parts therefore finite numbers represented (or 

“used”) so Turing computable functions only”. We just cannot be 

sure that this is necessarily so until Siegelmann offers more 
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detail about her proposal.

The next feature, generality, is one which we have already met in 

passing. Since there are general (or universal) networks, at least 

at the Turing computable level, Siegelmann’s proposal is 

satisfactory on that account. It is unclear from her monograph, 

however, whether or not there is a general  network that computes 

all the Siegelmann network functions. Siegelmann comes close to 

suggesting that there is not; she writes (emphasis added):

“In particular, if exponential computation time is allowed, one can specify a 
network for each binary language , including non-computable ones.”

However, the quoted remark is not conclusive. One needs to ask in 

this case “when” infinite precision would be needed. For instance, 

Chalmers (1996) has pointed out that at least one model of super-

Turing analogue computation requires infinite precision “all at 

once.” Siegelmann would thus have to show that to produce this 

general network one needs only finite precision at the beginning 

of operation. (Recall that most Siegelmann style networks do not 

begin with infinite precision in a certain respect.) Further she 

must show how the general network gains the appropriate precision 

and in a finite time, otherwise her proposal also involves a 

supertask .  Note this even more complicated in the case of our 

“strong” understanding of super-Turing computability. 

Ord and Kieu (2003) have claimed that there cannot be a general 

Siegelmann network as the input to a given network is always 

finite, and that to specify a network one needs infinite precision 

for every weight. Hence, they claim, one could not possibly feed 

in “weights to be simulated.” This follows if one assumes that any 

network whatsoever is capable of being simulated. If one restricts 

oneself to networks that are not excessively complicated, then it 

might be possible to “start” with some infinite properties and 

“distribute them” appropriately in the simulation. Since , as 

Siegelmann points out,  there is a universal Turing machine 

equivalent neural network this “excessively complicated” 

qualification we have given may be taken to be the structure 
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(number of nodes and links, etc.) of this network. Of course this 

does not show that one could do the “spreading around” we have 

suggested. The latter is implausible, since it would likely 

require more operations beyond the addition and multiplication 

that the Siegelmann networks perform. These considerations are a 

possible area of future research.

There are two possible responses that Siegelmann could make to the 

above objection. The first is to consider whether we could somehow 

encode the precision bound required into the “program” to be run 

on the network, and somehow have the network “construct” the 

appropriate “receptors”. (This procedure would be much as we 

decide when running Bochs, say, to emulate X megabytes of memory 

for the virtual machine. 22 ) This proposal fails because one can 

always run the “emulation” software in itself. How would one do 

that on this proposal? 23  The second response is to simply deny the 

importance of the generality condition we have proposed. We 

construct specific-task neural networks and do not worry about 

generality. Giving up the concept of “programmability” is a major 

loss which would not be acceptable to many computer scientists and 

engineers. Since the Siegelmann networks are at least Turing-

general, it seems plausible that one could at minimum have 

machines combine one specific sort of super-Turing machine and a 

universal Turing machine equivalent one. Generality is thus not 

totally lost.

“Timelessness” is our next area to debate. Unlike the Turing 

machine, the Siegelmann network requires the explicit use of a 

time variable. It  gets used in several ways, some innocuous. 

However, there are several ways in which the time consideration of 

the Siegelmann network creates difficulty. First, we do not in 

general know the exact running time of a Siegelmann network. (We 
22 Bochs is an 80x86 system emulator for various platforms. In order to set up 

the settings of the emulator, the user must decide how much 80x86 memory she 

wishes to emulate.

23 This objection is similar in flavour to the discussion of “well founded 

games” in Cameron (1999).
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can work out its complexity class, e.g. that it belongs in class 

O(log n) for some parameter n, but the constants left aside by the 

bound in this case  are critical.) It is true that the network does 

flag its output in analogous way to the Turing machine halt state 

with its data ready line. However, unlike the Turing machine which 

enters the “halt” state by the “programmer’s” decision, the 

Siegelmann model is not so programmed. We are not told how to 

“raise the flag” to indicate the value of the computation which is 

being outputted nor how the network recognizes that its output is 

ready. Once again, the Siegelmann network is underspecified.

Further, an infinite regress looms here. Since it is not Turing-

computable when even a Turing machine will halt (if at all), 

determining the response time of a Siegelmann network is also not 

Turing-computable. If this parameter is to be determined at 

construction of the network, one needs to first create a super-

Turing network to calculate the response time of the network one 

originally intended to create. But how does one determine the 

response time of the response-time calculating network? The 

alternative to the preceding considerations seems to be that the 

network itself is supposed to validate its own solution, that is, 

it must periodically check internally that the solution is ready. 

Again, it is not generally clear how exactly this is to work. 

Also notice that the “learning networks” create another problem 

with regards to time. If the precision of an infinitely precise 

real number is not available at the beginning of the run of a 

network, and the precision increases uniformly in time, it will 

take an infinite amount of time for the network to become 

infinitely precise. As  previously noted in passing, this entails 

immediately that the networks are actually Turing-equivalent for 

any finite period of time. Here let us note further that this puts 

Siegelmann’s model in an unfortunate dilemma much as the precision 

consideration proper above provokes. Once again, either the 

network is infinitely precise in finite time, in which case the 

Siegelmann network is implausible from the sensitivity 

considerations we have canvassed and from related concerns, or it 

Page 50 of 61



is only infinitely sensitive in infinite time, in which case using 

it to perform super-Turing computations would require a supertask.

The consideration of “hierarchy” is our penultimate point of 

criticism  of the Siegelmann networks. As noted, the Siegelmann 

networks easily fit into the hierarchy if we allow exponential 

running time and exponential sized weights (see above on 

protocol). In other words, the class of functions computed by all 

the Siegelmann networks does strictly include the class of all 

functions computable by Turing machines. If there is no general 

Siegelmann network, however, this is cause for some worry 

regarding the hierarchy: we would want the generality to be 

preserved and extended in its next stage. There being no general 

Siegelmann network would make the universal Turing machine rather 

special: there is no universal finite automaton or universal push-

down automaton either. This would be an interesting result if it 

could be shown, and one that would lend credence to the Turing 

machine model as a good model of computation for “practical 

applications.” (Of course, it could be that there is some other 

model with all the virtues of the Siegelmann model that is general 

for its class and everything below it. Needless to say, such would 

have to be further up the hierarchy.)

To summarize, w e have discussed several areas where the Siegelmann 

network model of computation is underspecified or ill-motivated. 

There were problems with infinite sensitivity and infinite 

“registers” as well as issues with the protocol such as how the 

computation time parameter works and how to avoid an infinite 

regress.

We have concluded that the Siegelmann network is not a suitable 

model of computation for the critical reasons canvassed. Next we 

answer some responses to critics of our work. 
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Part 5: Responses to Our Critics

This section responds to possible criticisms of our work. It 

summarizes relevant points where this is helpful to answer the 

criticisms.

A first family of questions we must answer: “Why do we suppose 

that Siegelmann’s model is a model of computation  at all? Doesn’t 

Siegelmann’s approach make everything with quantifiable properties 

compute? Doesn’t her approach commit one to 

“pancomputationalism”?” Our answer is perhaps the one that she 

would give, though she in fact does not provide it in her 

monograph. Our answer also presupposes that one considers a 

rational valued neural network a model of computation. Granted 

that assumption, the Siegelmann model can be looked at as an 

attempt to modify (minimally) an existing, Turing equivalent model 

of computation to produce one that is super-Turing. We thus must 

ask: what are these modifications? are these modifications 

plausible? 

Further, not only does the network at some stage possess a 

property with an uncomputable magnitude (either strong or weak), 

but it is so constituted that the property in question is (one 

might say) computationally efficacious . By this we mean it 

plays a role in the entire process of the network, which we 

(suitably interpreting it via the I/O protocol) take as computing 

some function or other. By contrast, a lever like AB:

θ

B

A

Figure 4: Lever.

does not “compute” an uncomputable function (in the Turing sense), 

even if θ happens to be Chaitin’s constant. It might be construed 

that this characterization is question begging. In other words, 

someone might rejoin: “How do we know that the neural networks of 

Siegelmann are computing and the lever is not: after all, one 
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could say it is computing the constant function x(t) = Chaitin’s 

constant?” Our answer appeals to the use of each machine. The 

lever is not used  to compute, whereas the networks are. In 

particular, there probably can be no “programmable lever” where 

there is a programmable (hence ‘universal’ in a certain class) 

network 24 .  There is also no protocol for reading off the result in 

question. We are thus claiming that at least some computers are 

computers by convention. This approach is similar to the Turing 

set-up. We interpret as  a computation what Turing’s computor is 

doing mindlessly. The “protocol” in both cases gives a semantics 

for humans to interpret.

The second group of questions we answer presupposes our answer to 

the first. We respond to the question “Doesn’t Siegelmann’s model 

of computation change the subject? Turing analyzed human 

computability: why should we expect that another sort of 

understanding of computation coincides with the Turing one?” We 

respond by noting some of the similarities between the Siegelmann 

network and the Turing machine.

It is important to note that an important feature of the Turing 

analysis is that it centers around a computor capable of operating 

on “external” representations (configurations of symbols) of items 

to compute with; the latter which must be writeable and readable 

in some well specified fashion. Similarly, the Siegelmann network 

also makes use of a analogous  (crucially: digital)  external 

representation and simply uses a different sort of “state machine” 

to operate on it. In that sense there is also similarity between 

the two sorts of machines (recall part 1 and part 3 of this 

thesis). We argue, in other words, since both the Turing machine 

and the Siegelmann network can be seen as a state machine 

operating on an external representation of similar character, it 

does not matter what the internal mechanism is to be, at least 

from the perspective of “changing the subject” (That the internal 

24 Further, this stipulation does not rule out natural computers - if we permit 

ourselves to speak of functions of parts of organisms at all. But that is 

another story for another time.
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mechanism of the Siegelmann network is underspecified is another 

matter, and the key issue we find problematic.)

We move on now to debate a new criticism.

Davis has written a paper (forthcoming) in which he discusses 

several super-Turing models, including Siegelmann’s. We respond to 

Davis here as his apparent refutation of the model is much shorter 

than ours. In other words, we answer the question “Why did you 

spend 40 pages discussing something that can be refuted in a few 

paragraphs?” We would like to stress that Davis’ article is in 

conclusion  much in agreement with the present work and the 

criticisms below speak more to how he arrives at these same 

conclusions. 

Davis asserts that in order to obtain the super-Turing power of 

the Siegelmann networks one has to provide them initially with 

non-Turing computable weights. In that sense the powers of the 

Siegelmann network are unsurprising (and question-begging: how 

does one obtain such a weight in the first place?). While we do 

agree with his conclusions, Davis does not (of course) mention the 

“weak” and “strong” versions of super-Turing computation that we 

have mentioned in our discussion. He also overlooks that the 

infinite precision of the Siegelmann networks is only required 

after infinite time. Siegelmann has proved (pp. 68-69) that only 

linear (in the time of calculation) precision is needed in her 

networks. Our problem with Siegelmann’s approach is thus that the 

mechanism by which the precision of the registers increase is not 

described. This we feel is more charitable to Siegelmann’s model 

than Davis grants. That said, Davis can rejoin that Siegelmann’s 

model presupposes that the weights are actually infinitely precise 

to begin with and only get truncated “after being used”; thus we 

need to assume that the full precision weights are available at 

construction. However, all that is required by the model is that 

at time t + 1, the precision is increased from time t. The source 

of these “extra data” is one of our problems with Siegelmann’s 

model. 
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In the context of discussing discovering a non-Turing computable 

physics which could provide the Siegelmann network (and other 

super-Turing computation proposals we need not discuss) with the 

needed non-Turing computable parameters, Davis’ paper also quotes 

Scott concerning how we would recognize a “nonrecursive black 

box”. We feel this quotation is also slightly mistaken: it proves 

too much. We agree that no finite amount of interaction with a 

black box could show that it performs non-Turing computable 

processes. However, no finite amount of observation could tell you 

that a black box contains a Turing machine. Any finite 

experimentation with input and output is consistent with the black 

box being a (perhaps very large) finite state automaton. This is 

not to say Scott and Davis are mistaken concerning the difficulty 

of determining that one has a super-Turing machine of some kind, 

but instead that it is important not to overstate this difficulty. 

Davis does, however, correctly stress at this point of the article 

our previous point about the nomological impossibility which makes 

Siegelmann’s super-Turing proposal implausible. That is, he 

emphasizes how hard it would be to tell that one had a non-

recursive “transparent box” (i.e. a black box with much of its 

workings well known).

We would also like to point out that our criticisms of Siegelmann 

apply even if science were to give us a means to obtain a non-

Turing computable number. By contrast, Davis focuses more on the 

implausibility of obtaining such a number, albeit alluding on page 

page 10 of his paper briefly and ellipitically to the sensitivity 

consideration we discuss.

Finally, we also feel that Davis gives insufficient attention to 

Siegelmann’s (albeit unsuccessful) attempts to integrate her model 

with existing models of computation in order to render it more 

plausible. Our task has been to see how these attempts at 

integration go. If we were simply to take Davis’ refutation of 

what he calls the “myth of hypercomputation”, we would not know 

exactly why Siegelmann’s model would be even worth considering in 
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the first place. By providing a more detailed discussion we hope 

to have provided fruitful avenues for debate.

Another criticism with which we must deal concerns the status of 

Siegelmann’s idealizations, after all, the Turing machine model 

itself makes idealizations concerning computing agents and their 

resources. The critic will ask: why should we not grant relevant 

idealizations to the Siegelmann network? Our response to this 

objection begins by noting that we are  granting idealizations to 

the Siegelmann network: we are in fact giving it many of the same 

idealizations as the Turing machine. In particular, we are 

allowing it to calculate for arbitrary (but finite) periods of 

time without breaking or running down; we are allowing it to 

output any finite number of symbols and to take any finite number 

as input. We allow further that the network can be constructed out 

of any finite number of nodes (which parallels allowing the Turing 

machine any finite number of computationally relevant states 25 ), 

etc. What we object to is the idealization of infinite precision. 

As we have said, it does not hold, even approximately. An analogy 

from another area of investigation will hopefully make this 

clearer. Consider the case of a two body system in Newtonian 

mechanics. We can work out the gravitational force (and hence 

acceleration) on each body to a given degree of accuracy. Assuming 

we know the masses, initial velocities, and mutual distance, etc. 

sufficiently precisely beyond a certain value, we know the 

qualitative behaviour of the system: we know that it will be 

gravitationally bound or that the bodies will escape, etc. This 

prediction will not be overturned by increasing the precision of 

our measurements of the distance or masses 26 , assuming a certain 

threshold precision is obtained. By contrast, the Siegelmann 
25 N.B.: We are not saying that the Siegelmann networks are finite in state.  

That would be obviously false. But they have a finite number of 

computationally relevant parts ,  at least as described by Siegelmann herself.

26 On the other hand, the assumption that the two bodies are completely 

isolated or only undergo gravitational forces (etc.) may turn out to be an 

inappropriate idealization.
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networks would change the class of their behaviour (what class of 

functions they compute) were they actually constructed. In this 

sense the idealization is unrealistic (nomologically impossible 27 , 

according to current knowledge of physics of noise, etc.: see part 

4), and always  so, suggesting that it is inappropriate as it is 

( unlike the Turing machine)  never even approximately 

constructible. That said, we have of course no objection to 

someone who wishes to study the mathematical properties of how the 

networks are described. This seems to be Siegelmann’s own primary 

intention, at least some of the time.

Contrarily, another critic may wonder why we are even considering 

the idealizations underlying the Siegelmann network. He would ask: 

“Aren’t they so far fetched as to be not worth the time to 

debate?” Our answer to this relates to our answer to the previous 

critic. We agree with this critic that the Siegelmann network 

idealizations are implausible; it is difficult to imagine how 

humans could make use of infinite properties. But implausibility 

is by itself not a sufficient reason to reject them 28 . Once again, 

an analogy helps make our point. Routine, teaching-type, 

experiments in mechanics make use of the notion of a frictionless 

surface. In these cases, the idealization can be checked against 

reality. Similarly, with the Siegelmann network we can see 

(conceptually or via “thought experiments” of sorts, as Siegelmann 
27 It has sometimes been claimed that super-Turing computation is self-

contradictory and thus logically impossible, so the arguments against it from 

nomological impossibility such (as ours) are hence weaker than necessary. We 

know of no successful proof to that effect; Ord and Kieu (2003) have shown the 

fallacious nature of many such arguments. Davis’ article (discussed above) 

seems to agree with us when he suggests that one has to draw a distinction 

between the abstract theory of computation and the features of physical 

computers. We wish to avoid debating how to interpret the former, and since 

super-Turing proposals like Siegelmann’s are (in part) an attempt at 

understanding the latter, we feel Davis’ suggestion has merit in that respect.
28 After all, it is perfectly conceivable that someone might find the Turing 

assumptions too implausible to be worth debating as well. Rejecting this 

approach there should lead us to reject the approach with the Siegelmann 

network.
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has done) how these idealizations fail to match reality. If it 

were the case that these idealizations resulted in different sorts 

of “malfunction” or error, (say) ones that allowed us to do super-

Turing computations with (say) X% reliability (X > 0), then 

perhaps the Siegelmann network would be a useful model. But since 

it appears that the networks would have 0% reliability (i.e. would 

never work to perform super-Turing computations), the network 

idealizations are not suitable. That is to say concerns over being 

“far fetched” are necessary but not sufficient for evaluating the 

merits of a scientific or technological proposal. Another way to 

understand our answer is  as a reminder of precisely  how far 

fetched the Siegelmann assumptions are.

We have responded to several criticisms about our work. Next, we 

summarize our findings and suggest a few areas of future research.
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Part 6: Conclusions and Future Directions

Our comparison of the Turing and Siegelmann models and the 

critical examination of the features of the latter leads us to  

conclude that Siegelmann’s approach, while promising in certain 

respects, is insufficiently developed to adequately and completely 

assess its merits. Nevertheless, to the extent that her model is 

developed we do not feel it serves satisfactorily  as a model of 

super-Turing computation.

There are four possible extensions to the present work we would 

like to mention before closing . First, more direct analysis of the 

neural network operations would be possible if Siegelmann were to 

develop her model further. For example, she could elucidate better 

how sensitivity is to function or how the infinite “registers” are 

to be understood. Second, the framework of this thesis could be 

used to analyze other notions of putatively super-Turing 

computation. This would bring some unity to the debates on this 

subject in the literature. Third, the distinction between 

computing by symbol manipulation vs. computing by simulation or 

dynamics could be spelled out in further detail in order to 

provide a greater understanding of the work of Siegelmann (and 

perhaps others). Fourth, a more extensive exploration of the 

inter-simulation powers of the Siegelmann networks, prompted by 

the investigations of Ord (mentioned in part 3), would prove 

useful in studying their generality.

This ends the text of this thesis. We hope that the reader enjoyed 

the material presented and found that it helped to introduce and 

clarify some issues in the debates over super-Turing computation.
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